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概要
Large N QFT　とは場の数が非常に多い場の理論である。近年、Large N QFTの考え方が AdS/CFT

に通ずるのではないかと考えられている。この卒業論文では必要となる場の理論の基礎を述べた後、Large

N modelの簡単なモデルを扱い、その性質を味わうことを目的とする。

なお、この卒業論文では c = ℏ = 1 の自然単位系を用い、ミンコフスキー計量として ηµν =

diag(+1,−1,−1,−1)を用いることとする。
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0 導入
Large N QCDは場の数を無限にする極限をとる、と言う考え方に基づく理論であり、近年、Large N QCD

と弦理論がホログラフィー原理を通じて対応しているのではないかと考えられている。また、Large N QFT

の一種である SYK modelは近年、２次元重力の性質を示す事がわかっている。この様に、Large N QFTの
考え方は AdS/CFT に通じているのではないかと考えられる。将来は AdS/CFT 対応の研究をしたい！と
思っているため、今回は将来を見据えて、この Large N QFTについて勉強することとなった。
とはいえ、僕みたいな普通の学部生には、場の理論の知識がない...*2。そこで、今回の卒業研究では、実スカ
ラー場の理論に絞って場の理論を勉強した後、その知識を用いて Large N QFTの簡単なモデルを勉強するこ
とになった。今回扱ったモデルは Large N QFT の「トイモデル」のレベルだと思うが、幸運にも Large N

QFTの示す面白い性質は味わう事ができる。
なお、この卒業論文では「self-consistent」を心がけている。つまり、必要な知識はなるべくこの卒論内で完
結するようにしている (つもり)。その甲斐あって少々、いや、かなり長い卒業論文になってしまった。先生方
や場の理論の知識をお持ちの方は、セクション 1、セクション 2、付録 A、付録 B、付録 Cは飛ばしてもらっ
て大丈夫だと思います。

まずは経路積分の勉強からだ。では行こう。

*2 まあそんな弱音を言っていてもしょうがない。一瞬で強くなることはできない。前に進むには小さな一歩一歩を積み上げるしかな
いのだ。
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図 1.1 二重スリット実験

1 経路積分
この章では場の理論において非常に有効な手法である経路積分法について述べる。*3経路積分は、ある変数

xを引数に持つ関数 ϕ(x)における積分である。*4ϕ(x)がありとあらゆる形 (経路)を取るので、「経路」積分と
呼ばれている (と思う)。
このセクションでは、量子力学を題材にして経路積分の導入を行う。量子力学では座標と運動量は演算子とし
て扱わなければないが、経路積分を用いると座標と運動量は演算子として扱う必要がなくなる。

1.1 経路積分のアイデア
このセクションでは二重スリット実験についての考察から、経路積分のアイデアが出てくることを述べ
る。図 1.1 のような二重スリット実験を考える。ソース S から電子などの粒子を発射し、スクリーン上で
発射された粒子を検知する。ただし、ソースとスクリーンの間に障壁を用意し、障壁には位置 A1、A2 に穴
が空いている。この時、スクリーン上のある点を O とし、経路 O → A1 → O を通った場合の波動関数を
ψ(S → A1 → O)、経路 O → A2 → Oを通った場合の波動関数を ψ(S → A2 → O)置くと、スクリーン上の
点 O で粒子が検知される確率振幅 ψ(S → O)は以下のようにふたつの経路からの重ね合わせとなる。*5

ψ(S → O) = ψ(S → A1 → O) + ψ(S → A2 → O) (1.1)

このことは、障壁の穴がいくつあっても同じことが言えるだろう。すなわち、障壁上の穴の位置を
Ai(i = 1, 2, 3...)とすると、

ψ(S → O) =
∑
i

ψ(S → Ai → O) (1.2)

*3 一応この卒業研究の期間で勉強したことなので自分の理解を整理するためにも、経路積分について書くことにしました。
*4 ϕ(x)は多変数関数でも良い。この変数 xは (物理では)時空座標に対応し、ϕ(x)は時空座標上で定義された「場」である。
*5 今回は重ね合わせの係数 (重み)はそれぞれの経路の波動関数の中に入っていると考えてください。
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図 1.2 障壁が 2枚の時 図 1.3 障壁の数、穴の数を無限に増やした時

となる。
次に、図 1.2のようにソースとスクリーンの間にある障壁をもう一つ増やしてみる。一つ目の障壁にある穴の
位置を Ai、ふたつ目の障壁にある穴の位置を Bj とする (i, j = 1, 2, 3...)すると、今度はソース S から観測点
O までの全ての通り方の重ね合わせになるだろう。これを式で表すと、

ψ(S → O) =
∑
i,j

ψ(S → Ai → Bj → O) (1.3)

となる。
さらに障壁を増やし、穴の数も無限大にしてみると、図 1.3のようになる。障壁は無限個の穴が空いている
のでもはやなくなってしまうだろう。このように、障壁のない空間においても、「仮想的に無限個の穴の空い
た障壁」を無限枚考えることにより、ソースからスクリーンに到着するまでの確率振幅は、ありとあらゆる経
路の重ね合わせであると考えることができる。このような思考実験は経路積分の考え方を示唆している。

1.2 量子力学と経路積分
前の節では経路積分のアイデアが二重スリット実験から出てくることを見た。では、今度は実際に量子力学
で確率振幅を計算し、経路積分をちゃんと導入しよう。
粒子の発射するソースの位置を qI、スクリーン上で検知する位置を qF とする。粒子を発射する時刻を t = 0

とし、スクリーン上で検知する時間を t = T とする。t = 0でソースから粒子を発射するとき、粒子は位置 qI

に局在している状態なので、初期状態は 〈qI |である。スクリーン上の位置 qF での粒子の確率振幅は以下の通
りである。

〈qF | e−iĤT |qI〉︸ ︷︷ ︸
初期状態から時間発展

(1.4)

ただし、Ĥ はこの系のハミルトニアン演算子である。ここで、δt = T/N として時間 T を N 当分すると、

〈qF | e−iĤT |qI〉 = 〈qF | e−iĤδt · · · e−iĤδt︸ ︷︷ ︸
N 個

|qI〉 (1.5)

となる。ここで、(1.5)に完全系の式 ∫ dq |q〉 〈q| = 1を N − 1個以下のように挿入する。

〈qF | e−iĤT |qI〉 =
∫
dq1 · · · dqN−1 〈qF | e−iĤδt |qN−1〉 〈qN−1| e−iĤδt |qN−2〉 · · · 〈q1| e−iĤδt |qI〉 (1.6)
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今十分大きな N を考えおり、δt　は微小なので、e−iĤδt を近似して以下のように計算する。

〈qj+1| e−iĤδt |qj〉 ≒ 〈qj+1| (1− iH(q̂, p̂)δt) |qj〉

=

∫
dpj 〈qj+1|pj〉 〈pj | (1− iH(q̂, p̂)δt) |qj〉

=

∫
dpj(1− iH(qj , pj)δt) 〈qj+1|pj〉 〈pj |qj〉

(1.7)

ここで ∫ dq |p〉 〈p| = 1を用いた。また、〈q|p〉 = 1√
2π
eiqp を (1.2)に代入し、δt　が微小であることをもう

一度使うと、

〈qj+1| e−iĤδt |qj〉 =
1

2π

∫
dpjexp (i(pjvj −H(qj , pj)δt) (1.8)

となる。ただし、vj :=
qj+1−qj

δt と置いた。さらに、ハミルトニアンとして、Ĥ = p̂2

2m + V (q̂)の時を考える。
(V (q)はこの系のポテンシャル)pj の積分はガウス積分なので実行すると、

〈qj+1| e−iĤδt |qj〉 =
√

−im
2πδt

exp

(
i

(
1

2
mq̇j

2 − V (qj)

)
δt

)
(1.9)

(1.9)を (1.6)に代入する。ただし、qN = qF、q0 = qI とする。得られる式は以下の通り。

〈qF | e−iĤT |qI〉 =
(
−im
2πδt

)N
2
∫
dq1 · · · dqN−1exp

iN−1∑
j=1

L(qj , q̇j)δt

 (1.10)

ただし、L(qj , q̇j) = 1
2mq̇j

2 − V (qj) と置いた。最後に N → ∞とする。∑j δt→
∫
dtとなり、経路積分の

記号 ∫ Dq := (−im
2πδt

)N
2
∫
dq1 · · · dqN−1 を導入すると、(1.9)は

量子力学の経路積分表示� �
〈qF | e−iĤT |qI〉 =

∫
Dq exp

(
i

∫
dtL

(
q(t), ˙q(t)

))
(1.11)� �

となる。L
(
q(t), ˙q(t)

)
はこの系のラグランジアンである。∫ Dq は定義した形から、q(t)に対するありとあら

ゆる経路をとる (図 (1.4)、図 (1.5)を参照)。
ここで注目したいことは、(1.11)左辺では演算子形式の形であるが右辺ではもはや位置 q は演算子ではなく
なり、経路積分の変数である。つまり、経路積分の形に書けば演算子を用いることなく量子力学を考えること
ができる。
なお、今 ℏ = 1の単位系を用いているが、ℏを復活させると、

〈qF | e−iĤT |qI〉 =
∫
Dq exp

(
i

ℏ

∫
dtL

(
q(t), ˙q(t)

))
(1.12)
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図 1.4 経路積分 (離散化) 図 1.5 連続化 (N → ∞)

となる。古典極限 ℏ → 0で考えると、経路積分でもっとも効いてくる経路は、作用 S =
∫
dtL

(
q(t), ˙q(t)

)
を

停留させる経路である*6。つまり、変分原理 δS = 0を満たす経路 (onshellの経路)である*7。offshellの経路
(運動方程式に従わない経路)も積分にはもちろん入るが、それらの項は exponentialの肩にあるので位相が互
いに相殺し、あまり効かないだろう。

*6 これはいわゆる鞍点法 (saddle point approximation)の考え方を用いている。
*7 変分原理を満たす経路とはつまり運動方程式に従う経路のことだ。
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2 実スカラー場の理論
このセクションでは、実スカラー場の理論の簡単な導入を行う*8。この卒業論文では場を演算子と考える正
準量子化の方法ではなく、セクション 1 で導入した経路積分の方法を用いて場の理論を記述する*9。このセク
ションでは自由場の理論から始まり、摂動論において非常に重要であるWickの定理と Feynman diagram に
ついて述べる。摂動論の相互作用としては ϕ4modelと ϕ3modelを扱う。この二つのモデルを用いて得られる
知識は後のセクションで重要となる。また、最後の章では実スカラー場における対称因子の考え方について、
ϕ4modelを例にとり説明する。

2.1 自由場
相互作用のない、質量mの相対論的自由粒子は以下の Klein-Gordon方程式に従う。*10

(∂2 +m2)ϕ = 0 (2.1)

(2.1)は以下のラグランジアンから得られる。*11

L =
1

2

(
(∂ϕ)

2 −m2ϕ2
)

(2.2)

ただし、(∂ϕ)
2
= (∂µϕ) (∂µϕ) =

(
∂ϕ
∂t

)2
−
∑3

i=1

(
∂ϕ
∂xi

)2
である。(2.2)に対して変分原理を用いれば (2.1)が

得られる。

(2.2)のラグランジアンは完全に自由な粒子の場合であるが、そこにソース関数 J(x)を以下のように加え
る。*12

L =
1

2

(
(∂ϕ)

2 −m2ϕ2
)
+ J(x)ϕ (2.3)

J(x)ϕの項は真空の状態から「揺さぶり」を与えている。例えば量子力学で考えると、L = 1
2 ϕ̇

2 −V (x)(v(x)

はポテンシャル) で、ポテンシャルに対して −J(x)ϕ の項を加えることに対応している。これはつまり、場
ϕ(x)に対し位置 xにおいて”力”J(x)で押しているということである。*13また、場の理論で重要となる積分 Z

を以下のように定義する。

Z(J) =

∫
Dϕei

∫
d4x(L+Jϕ) (2.4)

*8 僕はこの卒業研究で初めて場の理論を学び始めたので、一応勉強したことをまとめようと思います。
*9 とはいえ付録 B でちょっとだけ正準量子化の議論もする

*10 山口先生の授業「相対論的量子力学」で扱った。
*11 今後、ラグランジアン Lもラグランジアン密度 L もどちらもラグランジアンと呼ぶことにする。Lか L かは文脈判断でお願い
します。

*12 f(x)と書けば引数 xは 4次元の座標を表すとする。つまり、f(x) = f(t, x, y, z)だ。
*13 後でこのソース関数 Jによって feynman diagramにおける粒子の沸き出し、吸い込みが起こる事がわかる
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∫
Dϕはセクション (1)で導入した経路積分である。Z(J)は分配関数または生成汎関数と呼ばれる*14。自由
場の場合は生成汎関数は、

Z(J) =

∫
Dϕei

∫
d4x( 1

2ϕ((∂ϕ)
2−m2ϕ2)+Jϕ) (2.5)

である。自由場の場合はこの積分を実際に計算する事ができる。
まず、(2.5)の (∂ϕ)

2 を部分積分する。表面項は無限遠で ϕが０になることを仮定して無視すると、

Z(J) =

∫
Dϕei

∫
d4x(− 1

2 (∂
2+m2)ϕ+Jϕ) (2.6)

ここで、時空座標を格子状に離散化する。4 次元時空座標を時間と空間３方向について刻み幅 a で離散化
し、*15i番目の格子点に対する ϕ(ia)の値を qi = ϕ(ia)と置く*16(i=1,2,. . . N)。また、tq̃ = (q1, . . . qN )とし
てベクトルを定義する。J(x) についても同様に離散化する。また、−(∂2 +m2) に対応する行列を A と置
く*17 すると、(2.6)は以下のように書き換えられる。

Z(J) =

∫ ∞

−∞
dq1 · · ·

∫ ∞

−∞
dqNe

i
2 q⃗·Aq⃗+iJ⃗·q⃗ (2.7)

この式は (A.1)を用いると、

Z(J) ∝ e−
i
2 J⃗·A

−1J⃗ (2.8)

最後に、(2.8)を連続に戻す。J⃗ · A−1J⃗ =
∑

i,j JiA
−1
ij Jj のように

∑が二つある項は連続化すると二重積分∫∫ になることに注意すると、
自由場の生成汎関数� �

Z(J) = Z(J = 0) exp

(
− i

2

∫
d4x

∫
d4yJ(x)D(x− y)J(y)

)
(2.9)� �

となる。ただし、行列 A−1 の連続化に対応する関数をDと置いた。D(x− y)は伝搬関数 (propagator)と呼
ばれる。比例係数は Z(J = 0)に丸め込んだ。なお、伝搬関数は具体的に求める事ができる。伝搬関数 D は

*14 今回はこのようにして Z を導入した。これは後でわかる事だが、Z(J)は n点グリーン関数を生成し、ありとあらゆる Feynman

diagramを足し合わせたものである事がわかる。そういう意味で、分配関数とも呼ばれる。
*15 今時間と空間３方向について同じ刻み幅を設定したが、別に同じである必要はない。
*16 本来なら、時空座標の４方向の軸に対して４つの数字 i,j,k,l を用いて (t, x, y, z) = (ia, ja, ka, la) というようにして格子点を指
定するのが自然だと思うが、今これら 4つの数字をまとめて iと置いている。

*17 例えば、一回微分なら、( d
dx

f(x))i → fi+1−fi
∆x

=



. . .
. . . 0 . . .

0 1 −1 . . .

... 0 1 . . .

...
...

...
. . .




f1
.
..

..

.

fN

 である。今回は 2 階微分なので、

fi+1−2fi+fi−1

2∆x
　 みたいな項が出るだろう。対称行列になると想像できる。ただ、具体的な行列の形を求める必要はない。

想像するだけで十分である。
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A−1 の連続化であり、Aの連続化が −(∂2 +m2)に対応していることを考えると、D は −(∂2 +m2)の逆演
算子である。つまり、AijA

−1
jk = δik を連続化した式

− (∂2 +m2)D = δ(x− y) (2.10)

を満たす。
(2.10)はフーリエ変換で解くことができる。結果は次の通り*18。

D(x− y) =

∫
d4k

(2π)
4

eik(x−y)

k2 −m2
(2.11)

*19(2.11)を見ると、D(x− y) = D(y − x)が成り立つ事がわかる。

2.2 Wickの定理
この節では摂動論において重要な量である n点グリーン関数を導入し、Wickの定理について述べる。

2.2.1 n点グリーン関数
今、自由場のラグランジアンを L0 = 1

2

(
(∂ϕ)

2 −m2ϕ2
)
とする。このラグランジアンに相互作用項

Lint(λ) を加えたラグランジアンを L = L0 + Lint(λ)とする。ここで λは相互作用の結合定数である。*20
この時、生成汎関数は、(2.4)より

Z(J, λ) =

∫
Dϕei

∫
d4x(L0+Lint+Jϕ) (2.12)

である。この式の e
∫
d4xJϕ の部分をテイラー展開すると、以下のようになる。

Z(J, λ) =

∫
Dϕei

∫
d4x(L0+Lint)

∞∑
n=0

in

n!

∫
dx1 · · · dxnJ(x1) · · · J(xn)ϕ(x1) · · ·ϕ(xn) (2.13)

ここで、n点グリーン関数 G(n)(x1, · · ·xn)を以下のように定義する。*21

G(n) (x1, · · ·xn) :=
1

Z(J = 0, λ)

∫
Dϕ ϕ(x1) · · ·ϕ(xn)ei

∫
d4x(L0+Lint) (2.14)

*18 初めから D(x− y)と (x− y)の関数と書いているが、(2.10)を解いたら (x− y)の関数になった、と思うのが正しいと思う
*19 なお、特異点を避けるためm2 → m2 − iεとする処方もよく使われる。こうすることで分配関数 Z の積分の式に e−m2ϕ の項が
出て収束しやすくなるという都合もある。今回の卒論ではこの事実は詳しく使わないのでm2 のままにしている。

*20 摂動論では Lint が非常に小さいと仮定する。今は別に小さいと仮定していない。
*21 (付録 B)より、このように定義した n点グリーン関数は

〈
0
∣∣∣T (

ϕ̂(x1) · · · ϕ̂(xn)
) ∣∣∣ 0〉 を計算していることになる。つまり、正

準量子化の文脈においては n点グリーン関数は n点間の粒子の生成、消滅を表している。
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すると、(2.13)は以下のように n点グリーン関数で書ける。

Z(J, λ) = Z(J = 0, λ)

∞∑
n=0

in

n!

∫
dx1 · · · dxnJ(x1) · · · J(xn)G(n) (x1, · · ·xn) (2.15)

また、wickの定理でよく使う記号 〈· · · 〉を

〈· · · 〉 :=
∫
Dϕ(· · · )ei

∫
d4xL0∫

Dϕei
∫
d4xL0

=
1

Z(J = 0, λ = 0)

∫
Dϕ(· · · )ei

∫
d4xL0

(2.16)

として定義すると、n点グリーン関数は以下のように表せる。

G(n) (x1, · · ·xn) =
〈ϕ(x1) · · ·ϕ(xn)ei

∫
d4xLint〉

〈ei
∫
d4xLint〉

(2.17)

2.2.2 Wickの定理
摂動論の具体的な例は次節以降で紹介するが、摂動論をを用いれば、以下の量を計算する機会が多くある。

〈ϕ(xi)ϕ(xj) · · · 〉 =
1

Z(J = 0, λ = 0)

∫
Dϕ(ϕ(xi)ϕ(xj) · · · )ei

∫
d4xL0 (2.18)

この計算は経路積分 ∫ Dϕをセクション (1)で行ったように離散化し、∫ dq1 · · · ∫ dqN に置き換えると*22セ
クション (付録 A)の議論に帰着する。(付録 A.9)(A.2)、(付録 A.13)を連続化すると、以下のWickの定理が
成り立つ。

Wickの定理� �
〈ϕ(xi)ϕ(xj)〉 = iD(xi − xj) (2.19)

〈ϕ(xi)ϕ(xj) . . .︸ ︷︷ ︸
偶数個

〉 =
∑
Wick

〈ϕ(xa)ϕ(xb)〉 . . . 〈ϕ(xc)ϕ(xd)〉 (2.20)

〈ϕ(xi)ϕ(xj) . . .︸ ︷︷ ︸
奇数個

〉 = 0 (2.21)

� �
ただしDは伝搬関数で、∑Wick は可能な限り wick縮約をとってそれらを足し合わせよ、という意味である。

*22 経路積分を離散化して多重積分に置き換える時に比例係数が出るが、これは分母分子で消しあう。
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図 2.1 伝搬関数 (propagator)の図示

wick縮約はどんなものかというと、〈〉の中の項からペアを作る作業のことである。とはいえこれは日本語で
説明するより具体的に書いたほうがわかりやすい。
例えば

〈ϕ(xi)ϕ(xj)ϕ(xk)ϕ(xl)〉 = 〈ϕ(xi)ϕ(xj)ϕ(xk)ϕ(xl)〉+ 〈ϕ(xi)ϕ(xj)ϕ(xk)ϕ(xl)〉+ 〈ϕ(xi)ϕ(xj)ϕ(xk)ϕ(xl)〉
= 〈ϕ(xi)ϕ(xj)〉〈ϕ(xk)ϕ(xl)〉+ 〈ϕ(xi)ϕ(xl)〉〈ϕ(xj)ϕ(xk)〉+ 〈ϕ(xi)ϕ(xk)〉〈ϕ(xj)ϕ(xl)〉

といった具合である。それ以外にも、〈xixjxkxlxmxn〉、〈xixjxkxlxmxn〉、〈xixjxkxlxmxn〉などもある。た
だし ϕの引数だけを表記した。
このWickの定理は次節以降頻繁に用いる。摂動論で大活躍する。

2.3 Feynman diagramの導入
この節では場の理論の摂動論で便利な記法である Feynman diagramを導入する。Feynman diagramの記
法を用いることにより、煩雑な積分計算を一つの「図」で表す事ができる。このことにより、計算を視覚的に
とらえる事*23ができるし、2.6節で紹介する対称因子も図的にすぐ見つける事ができるのもそう。
まず、自由場の理論で導いた伝搬関数 D(x− y)を図 2.1のように表す*24。Feynman diagramにおいてソー
ス関数 J(x)の数は diagramの端点の数を表す。Feynman diagramは時空座標上に描いていると考えて良い
が、横軸を空間方向、縦軸を時間方向としても良いし、逆でも良い。また、Feynman diagram上の座標を正
確に描く必要はなく位置は大体で良い。

また、以下のような計算を相互作用*25として考え、図 2.2のように表すとする。

(−iλ)
∫
d4ω(iD(x1 − ω))(iD(x2 − ω))(iD(x3 − ω))(iD(x4 − ω)) (2.22)

*23 人間は目から得られる情報の方が理解しやすいのだと思う。「グラフ」なんかもそう。数値だけ見てもよくわからないけど、グラフ
にすると一目瞭然になる場面は多い。3桁 ×3桁の計算は暗算ですることは (僕には)厳しいけど、筆算を使えばできる。

*24 iD(x− y)は自由場における
〈
0
∣∣∣T (ϕ̂(x)ϕ̂(y))

∣∣∣ 0〉 を表している。つまり、自由場における２点相関である。
*25 今回は４点相互作用を例にとったが、３点相互作用や５点相互作用も考えられる。
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図 2.2 式 (2.22)の図示

図 2.3 式 (2.23)の図示

また、Feynman diagramの端点の座標も以下のように積分した式を図 2.3のように表すとする。端点の○
が、端点も積分しますよ、ということを意味している。

∫
d4x

∫
d4y(iJ(x))D(x− y)(iJ(y)) (2.23)

なお、この解釈を用いると、自由場において求めた分配関数 (2.9)は以下の図 2.4のように、Jの冪で展開
しても相互作用のない粒子の伝搬しか現れない。Jの高次の部分を求めても、ただ粒子が増えて素通りするだ
けである。これは相互作用のない自由場であるので妥当な結果である。

2.4 ϕ4model

このセクションでは相互作用の具体例として

Lint = − λ

4!
ϕ4 (2.24)

13



図 2.4 自由場の Z(J)を図示

となる場合を考える*26。λは結合定数であり、相互作用の大きさを表す。この項は Feynman diagram で図
2.2で表されるような４点相互作用を与える。今 |λ|は非常に小さい値とする。つまり、このモデルを摂動で
考える。このモデルは Feynman diagramを理解する上で教育的である。
まずは真空、つまり Z(J = 0, λ)を摂動で求めてみる。(2.12)より、

Z(J = 0, λ) =

∫
D ϕei

∫
d4ω(L0− λ

4!ϕ
4)

= Z(0, 0)〈e−i λ
4!

∫
d4ωϕ(ω)4〉

(2.25)

である。今 λが小さいと考えているので、exponentialを展開すれば良い。λの 0次からは当然 Z(0, 0)が
出てくる。λの 1次からは、以下のような項が出てくる。

Z(J = 0, λ)

Z(0, 0)
|λ1 次 = −i λ

4!

∫
d4ω〈ϕ(ω)4〉

= −i λ
4!

∫
d4ω〈ϕ(ω)ϕ(ω)ϕ(ω)ϕ(ω)〉

= −i λ
4!

∫
d4ω

(
〈ϕ(ω)ϕ(ω)ϕ(ω)ϕ(ω)〉+ 〈ϕ(ω)ϕ(ω)ϕ(ω)ϕ(ω)〉+ 〈ϕ(ω)ϕ(ω)ϕ(ω)ϕ(ω)〉

)

= −i3λ
4!

∫
d4ω〈ϕ(ω)ϕ(ω)〉〈ϕ(ω)ϕ(ω)〉

(2.26)

(2.4)は Feynman diagramで表すと図 2.5のようになる。
同様に、λの 2次もWickの定理を用いて計算すると、図 2.6のようなダイアグラムが出てくる事がわかる。
それぞれのダイアグラムの係数は真面目にWick縮約をとれば計算できる。図 2.5、図 2.6をみるとわかるよ

*26 4!の係数がなぜかかっているのかは後でわかる。
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図 2.5 (2.4)の diagram

図 2.6 (真空 diagram(λ2次)

うに、Feynman diagramの交点 (vertex)(相互作用する点)の数が λの次数に対応している。また、真空ダイ
アグラムにはソース項 J が含まれていないため Feynman diagramは端点のない diagramとなる。なお、図
2.6の (a)、(b)のように、ひと繋ぎのダイアグラムを連結ダイアグラムと言い、(c)のような二つのダイアグ
ラムに分離されているものを非連結ダイアグラムと言う。

また、2点グリーン関数 G(2)(x1, x2)は (2.17)より、以下の量を計算する必要がある。

〈ϕ(x1)ϕ(x2)e−i λ
4!

∫
d4ωϕ4(ω)〉 (2.27)

(2.27)も真空ダイアグラムの時と同様に e−i λ
4! をテイラー展開するとWickの定理で計算できる。*27例えば、

(2.27)の λ0次 (摂動 0次)からは 〈ϕ(x1)ϕ(x2)〉が出てきて、これは自由場の時の二点間の伝搬である。(2.27)

の λ1次 (摂動 1次)からは
− i

λ

4!

∫
d4ω〈ϕ(x1)ϕ(x2)ϕ4(ω)〉 (2.28)

*27 この卒論ではもっぱらWickの定理で計算を進める方法、つまり wick wayと呼ばれる手法を用いている。だが、もう一つ計算の
仕方があって、Schwinger way と呼ばれる方法である。こちらの方法は J(x) の汎関数微分を用いるやり方で、計算量こそ大け
れど Feynman diagramとの対応は直感的にイメージしやすい。実は僕は初めに Schwinger wayで Feynman diagramを学ん
だ。
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が出てきてこれは wickの定理で計算する事ができる。同様に、λ2次 (摂動 2次)からは、

1

2!

(
−i λ

4!

)2 ∫
d4ω1

∫
d4ω2〈ϕ(x1)ϕ(x2)ϕ4(ω1)ϕ

4(ω2)〉 (2.29)

の項が出てくる。これも wickの定理で計算できる。
これらの摂動計算をすると、図 2.7のようなダイアグラムが出てくる事がわかる*28。なお、図 2.7は摂動 2次
においては全てのダイアグラムを網羅しているわけではない。
(2.7)を見ると、今回加えた相互作用 (2.24)によって 2点グリーン関数は図 2.7の (b)(c)(d),,,のような補正
を受けている事がわかる。4点グリーン関数やそれ以上のグリーン関数に対しても同様の計算ができる。具体
的には図 2.8のような項も出てくる事がわかる。なお、今回の ϕ4modelでは (2.21)から奇数のグリーン関数
は 0である事がわかる。

2.5 ϕ3model

スカラー場の相互作用のモデルとしてもう一つ重要な例として、ϕ3modelを考える。つまり

Lint = − g

3!
ϕ3 (2.30)

となる場合を考える。g は結合定数であり、相互作用の大きさを表す。この項は Feynman diagram で図 2.9

で表されるような 3点相互作用を与える。今回も |g|は非常に小さい値とする。つまり、このモデルを摂動で
考える。
今回もまずは真空ダイアグラムから考える。今

Z(J = 0, g) =

∫
D ϕei

∫
d4ω(L0− g

3!ϕ
3)

= Z(0, 0)〈e−i g
3!

∫
d4ωϕ3(ω)〉 (2.31)

(2.32)

である。今回も、摂動論の考え方を用いて、e−i g
3!

∫
d4ωϕ3(ω)をテイラー展開して計算する。今回の場合、(2.21)

より、Z(J = 0, g)の g の奇数次の項は０である。摂動の最低次は g の 2次であり、以下のような項が出てく
る。

Z(J = 0, g)

Z(0, 0)
|g2 次 =

1

2!

(
−i g

3!

)2 ∫
d4ω1

∫
d4ω2〈ϕ3(ω1)ϕ

3(ω2)〉 (2.33)

これも wickの定理で計算すると図 2.10のようなダイアグラムが出る事がわかる。
今回は 1点グリーン関数 G1(x)などの奇数のグリーン関数も値をもつ。例えば、G1(x)の g1次からは以下
のような項が出る。

*28 こういう計算はとにかく実際に手を動かして練習するのが良い。Wick縮約をとって、逐一ダイアグラムとの対応を確認していく
と、そのうち Feynman diagramを描くのが計算としてとても楽なことに気づくだろう。慣れたら diagramだけで計算できるよ
うになると思う。とはいえやっぱりWick縮約での計算が基本の呼吸な気がする。
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図 2.7 ((2.27)から出てくるダイアグラム

− i
g

3!

∫
d4ω〈ϕ(x)ϕ3(ω)〉 (2.34)

これも wickの定理で計算できる。結果は図 2.11(a)のようなダイアグラムが出てくる。同様にG(2)(x1, x2)

も摂動で計算するとさまざまなダイアグラムが出てくる。代表的なものは図 2.11(b)がある。
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図 2.8 ϕ4modelの色々なダイアグラム

図 2.9 3点相互作用の diagram

2.6 実スカラー場における対称因子
この節では、実スカラー場における対称因子の考え方について述べる。今まではどのようなダイアグラムが
出てくるかに注目してきて、係数を含めた具体的な計算は述べてこなかった。ここからは wick縮約の仕方の
数を勘定することにより、対称因子を導出する。また、対称因子の考え方から、分配関数の log には「連結ダ
イアグラム」のみで表せることを述べる。
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図 2.10 真空 diagram(g2次)

図 2.11

2.6.1 Feynman diagramの重複度
前の節では相互作用として ϕ4modelや ϕ3modelを例にとり、Feynman diagram の扱い方を学んだ。wick

の定理で計算するとわかることだが、1つの Feynman diagramに対し、何通りかの wick縮約のやり方が考
えられる。ここで１つの Feynman diagramに対して、wick縮約の仕方の数を重複度と名付けよう。重複度
は具体例をいくつか考えればイメージが付く。
簡単のため ϕ3model を考える*29例えば図 2.11(a)のダイアグラムは (2.34)を以下のように wick縮約をとる
ことで得られる。

− i
g

3!

∫
d4ω〈ϕ(x)ϕ(ω)ϕ(ω)ϕ(ω)〉 (2.35)

しかし、wick縮約の取り方はこれ以外にも、〈ϕ(x)ϕ(ω)ϕ(ω)ϕ(ω)〉 と 〈ϕ(x)ϕ(ω)ϕ(ω)ϕ(ω)〉 のような wick縮
約の取り方がある。これらの wick縮約はどれも同じ Feynman diagram(図 2.11(a))を与える。つまり、重複
度は 3である。このことを考慮すると、(2.34)は以下のように計算できる。

*29 この節で述べることは ϕ4model でも同じ事が言える。
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図 2.12

−i g
3!

∫
d4ω〈ϕ(x)ϕ(ω)ϕ(ω)ϕ(ω)〉 = −i g

3!
×3︸︷︷︸
重複度

∫
d4ω〈ϕ(x)ϕ(ω)ϕ(ω)ϕ(ω)〉

= −ig
2

∫
d4ω〈ϕ(x)ϕ(ω)ϕ(ω)ϕ(ω)〉

=
1

2
(図 2.11(a)) (2.36)

ダイアグラムに係数 1
2 がかかった。一方、3点グリーン関数の 1次摂動で出てくる以下のような wick縮約

は重複度が 3!である。

−i g
3!

×3!︸︷︷︸
重複度

∫
d4ω〈ϕ(x)ϕ(y)ϕ(z)ϕ(ω)ϕ(ω)ϕ(ω)〉 = −ig

∫
d4ω〈ϕ(x)ϕ(y)ϕ(z)ϕ(ω)ϕ(ω)ϕ(ω)〉

= (図 2.12) (2.37)

今度はダイアグラムの係数は 1である。このようなダイアグラムの係数の違いはなぜ起こるのだろうか？そ
れはダイアグラムによって重複度が違うからである。(2.6.1)のような wick縮約の重複度は 3!と述べたが、こ
れは (2.6.1)のような wick縮約をとるときに、初めのペアの作り方は 3通り、二つ目のペアの作り方が 2通
り、最後のペアはあまりものなので 1通り、と考え 3!通りと答えても良いが、以下のように「同じ値である ω

をあえて区別してから並び替える」という数え方もあるだろう*30。

〈ϕ(x)ϕ(y)ϕ(z)ϕ(ω(1))ϕ(ω(2))ϕ(ω(3))︸ ︷︷ ︸
並び替え 3!通り

〉 (2.38)

*30 もちろん、wick縮約の数え方はひとそれぞれで、これ以外にも数え方はあると思います。今回僕が考えたのがこう、と言うだけで
す。
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図 2.13 対称因子の図形的解釈

そう考えると、(2.35)の重複度 3も以下のように数えられる。

〈ϕ(x)ϕ(ω(1))ϕ(ω(2))ϕ(ω(3))︸ ︷︷ ︸
3!/2 通り

〉 (2.39)

最大で 3!の並び替えがあるのだが、ϕ(ω(2))と ϕ(ω(3))の入れ替えに対して wick縮約が変化しないので、その
分 2で割る必要がある。このように、〈· · ·ϕ(ω) · · ·ϕ(ω) · · · 〉 が一つあると 2で割る必要がある。この割る数
のことを対称因子と呼ぼう。今回の場合、

〈· · ·ϕ(ω) · · ·ϕ(ω) · · · 〉 : 対称因子 2 (2.40)

である。それ以外にも、

〈· · ·ϕ(ω1)ϕ(ω1) · · ·ϕ(ω2)ϕ(ω2) · · · 〉 : 対称因子 2 (2.41)

である。これは３つずつある ω1 と ω2 をそれぞれ区別したときに 〈· · ·ϕ(ω(1)
1 )ϕ(ω

(2)
1 ) · · ·ϕ(ω(1)

2 )ϕ(ω
(2)
2 ) · · · 〉

が、ϕ(ω(1)
1 ) ↔ ϕ(ω

(2)
1 )かつ ϕ(ω

(1)
2 ) ↔ ϕ(ω

(2)
2 )の入れ替えに対して同じ wick縮約を与えるからである。その

他にも

〈· · ·ϕ(ω1)ϕ(ω1)ϕ(ω1) · · ·ϕ(ω2)ϕ(ω2)ϕ(ω2) · · · 〉 : 対称因子 3! (2.42)

である事がわかる*31。今回 wick縮約で考えた対称因子は Feynman diagramで見るとわかりやすい。2.13)

のような対応がある事がわかる。ϕ4modelでも同様に図 2.14のように対称因子を求められる。

以上の対称因子の考え方を用いれば一般の Feynman diagramに対する重複度が勘定できる。
摂動 n次の場合、一つの Feynman diagramに対する wick縮約の仕方は

〈ϕ(x)ϕ(y) · · ·ϕ3(ω1) · · ·ϕ3(ωn)︸ ︷︷ ︸
ϕ3(ω) が n 個

〉 → (3!)n︸ ︷︷ ︸
全てのωを区別し入れ替え

× n!︸︷︷︸
vertex の入れ替え

　× 1

S︸︷︷︸
対称因子 S

通り (2.43)

*31 こういうのは実際に並び替えを紙に書き出すと理解しやすい。
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図 2.14 ϕ4modelにおける対称因子

である。これより、対称因子 S の摂動 n次の Feynman diagramの係数は

1

n!

(
1

3!

)n

︸ ︷︷ ︸
e−i

g
3!

∫
d4ωϕ3の展開係数

× (3!)n︸ ︷︷ ︸
全てのωを区別し入れ替え

× n!︸︷︷︸
vertex の入れ替え

　× 1

S︸︷︷︸
対称因子 S

=
1

S
(2.44)

となる。つまり、Feynman diagramの係数は対称因子しか出てこない。(2.36)にも対称因子が出ていること
が確認できる。実際に ϕ4modelにおいて Z(J = 0, λ)と 〈ϕ(x1)ϕ(x2)e−i λ

4!

∫
d4ωϕ4(ω)〉wickの定理で係数まで

含めて計算した結果が図 2.15と図 2.16である。確かに Feynman diagram係数にその diagramの対称因子
が出ている事がわかる。例えば、図 2.17の diagramの対称因子は 23 だ。
つまり、煩雑な計算をしなくても、初めから Feynman diagramを描いて、係数は対称因子からめれば良い*32。
これも、Feynman diagram を用いる利点の一つである。

ところで、図 2.16の λの 1次の項や λの 2次の項を見ると、真空ダイアグラムとの積で表されるダイアグ
ラムも出てきている事が分かる (例えば図 2.16の第 3項)。実は、グリーン関数にはそのような真空ダイアグ
ラムを含むダイアグラムは出てこない。と言うのも、図 2.16で計算している量を図 2.15で割ると、うまくシ
ンクダイアグラムが除かれる事がわかる ((2.17)参照)。このことの証明自体は簡単で、以下のように考えれば
良い。*33

〈ϕ(x1) · · ·ϕ(xn)ei
∫
d4xLint〉から出てくる Feynman diagramを Fi とし、Fi の対称因子を SFi

とする。Fi

は真空ダイアグラムを含みうる。よって、真空を含まないダイアグラムを fi、真空ダイアグラムを Bj とする
と、Fi =

∑
j fi ×Bj とかける。この記法を用いると、

*32 次節で解説するが、これは生成汎関数においても同じ事が言える。とはいえ、個人的には wick の定理でコツコツ計算して、対称
因子は検算程度に思っといた方がいいと思っている。あんまり対称因子だけで計算を済ませると、実スカラー場以外の応用が効か
なくなる。実際、後で説明する large N 理論では対称因子の考え方ではなく、wick の定理の方が便利だったりする。とはいえ、
実スカラー場において非常に強力な検算方法を得た、といえよう！

*33 とはいえ、(2.6.1)のような計算よりも、図 2.16の高次の項まで具体的に計算し、真空ダイアグラムで因数分解する方が実感が湧
く。
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図 2.15 ϕ4modelにおける Z(J = 0, λ)

図 2.16 ϕ4modelにおける摂動の計算例

図 2.17 対称因子の図形的勘定

〈ϕ(x1) · · ·ϕ(xn)ei
∫
d4xLint〉 =

∑
i

1

SFi

Fi

=
∑
i

∑
j

1

Sfi×SBj

fi ×Bj

=
∑
i

∑
j

1

Sfi × SBj

fi ×Bj

=

(∑
i

1

Sfi

fi

)
︸ ︷︷ ︸

真空を含まない diagram

×

∑
j

1

SBj

Bj


︸ ︷︷ ︸
真空 diagram

= (真空を含まない diagram)× 〈ei
∫
d4xLint〉

(2.45)
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図 2.18 グリーン関数の計算例 (ϕ4model)

よって、(2.6.1)の結果を (2.17)に用いると、n点グリーン関数には真空ダイアグラムを含まないことがわ
かった。具体的には、図 (2.18)のようになる。図 2.16から真空ダイアグラムを含む項が取り除かれているこ
とに注目しよう*34。

この節で得られた結果をまとめておく。

� �
・Feynman diagramの係数は対称因子で求められる。
・n点グリーン関数には真空ダイアグラムが出てこない。� �

2.7 生成汎関数と Feynman diagram

この節では、(2.6)節の考え方を用いて、生成汎関数と Feynman diagramの関係について述べる。グリー
ン関数の時は Feynman diagramの端点の座標は固定していたが、生成汎関数を求める際は端点の座標さえも
積分される ((2.15)を見よ)。このことにより、新たな対称因子が加わる。また、生成汎関数の logは連結ダイ
アグラムのみで表されることを述べる。

2.7.1 生成汎関数に出てくる Feynman diagram

今回は ϕ4model のみを例に取り議論する。摂動論を用いて 2 点グリーン関数と 4 点グリーン関数を計算
し*35、その結果を (2.15) に代入する。この結果を Feynman diagram を用いて表すと図 2.19 のようになっ
た*36。端点を○で示しているのは、図 2.3と同様に端点の座標で積分していることを表している。
この結果をよく見てみると、n点グリーン関数の時に出てきた対称因子と微妙に違っている事がわかる。これ

*34 とはいえ、(2.6.1) のような計算をしても実感が湧きにくい。実感を沸かせるには、とにかく手を動かしてグリーン関数を摂動高
次まで求めれば良い。図 2.16 では全然足りない。λ の 2 次の項を全て求めると、ようやく真空ダイアグラムとの積にになってい
るという構造が見えてくる (あくまで僕の場合は)。
これを読んでいる将来の自分へ:ipadの good noteに計算ノート残ってるよ。

*35 ここは wick の定理でコツコツ計算する。ここで対称因子の考え方で答えを出すと、意味が薄い。なぜなら、今は対称因子が変わ
ることを計算結果として理解したいからだ。

*36 この計算は結構重い。
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図 2.19 摂動での計算結果

は (2.15)の展開係数の影響である。しかし、これは対称因子の考え方で理解する事ができる。例えば、図 2.7

のダイアグラムは端点を固定し、区別している。しかし、生成汎関数には端点の座標は積分されるので、端点
の区別はなくなる。これにより、端点に対する対称因子も考慮しなければならない。例えば、2.20左のダイア
グラムは対称因子 2 であり、図 2.20 右のダイアグラムは対称因子 22 である。両方とも端点が区別できなく
なったために対称因子が２倍大きくなった。
また、図 2.19のように計算した結果を式変形してみよう。図 2.21のように非連結ダイアグラムを積に分解し
てまとめると、図 2.22のような結果となった。図 2.22の計算結果は Z(J,λ)

Z(J=0,λ) が exponentialの形にかける
ことを示唆している。実際、図 2.23のようにおいてテイラー展開すると、出てくる項は見事に図 2.22に一致
する*37。図 2.22からは図 2.23への式変形は非連結ダイアグラムを連結ダイアグラムの積に分解したことを
になっている (exponentialで因数分解?のイメージ)。
以上の考察から、わかることは、「 Z(J,λ)

Z(J=0,λ) の logをとると連結ダイアグラムのみが残る」と言うことである。
実際、自由場の時の結果 (2.9)はそうなっている。自由場では相互作用がないので、考えられる連結ダイアグ
ラムは図 2.3のみだ。

また、同じことが真空ダイアグラムに対しても言える。図 2.15 の Z(J = 0, λ) を λ の 3 次まで計算する
と、、図 2.24のようになる。*38。図 2.24の結果は対称因子が正しく出ている事がわかる。対称因子の数え方

*37 図 2.22だと少し分かりにくいかもしれない。もっと摂動の精度を上げて、高次まで計算するとさらに図 2.23の構造があることが
実感できる。

*38 今回も wickの定理で地道に計算する。摂動 3次となると計算は結構大変。でも焦らず落ち着いて計算すればいける！。この卒論
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図 2.20 左:対称因子 2 右:対称因子 22 図 2.21

図 2.22 図 2.19を式変形

図 2.23

の例を図 2.25に記す。図 2.24も図 2.21と同様に非連結ダイアグラムを積の形にしすると、図 2.26のように
式変形できる。この式をじっと睨むと、図 2.27のような構造をしている事がわかる*39。これは Z(J = 0, λ)

が連結ダイアグラムを指数にもつ exponentialの形にかけることを示唆している (図 2.28)。よって、真空ダ
イアグラムに対しては、log(Z(J = 0, λ))が連結ダイアグラムのみで構成される事がわかった。

を見ている将来の自分へ:この計算も ipadの gooodnoteにあるよ。
*39 もちろん、さらに摂動の高次を計算すればより分かりやすくなるだろう。
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図 2.24 図 2.15を λ3次まで計算

この節で得られた結論は、

� �
・生成汎関数 (分配関数)はありとあらゆる Feynman diagramで構成される。
・生成汎関数 (分配関数)の logは連結ダイアグラムのみで構成される。� �
と言う事である。
この事実がわかると、Z が「分配関数」と呼ばれる理由が明らかになったと思う。分配関数 Z はありとあ
らゆる Feynman diagram の情報を含んでいる。逆に言えば、分配関数さえ求められれば、ありとあらゆる
Feynman diagramを導出する事ができる。
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図 2.25 対称因子の勘定の仕方 (例)

図 2.26 2.24を式変形
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図 2.27 図 2.26)を式変形

図 2.28 図??
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3 摂動 VS非摂動
この節まで、実スカラー場の理論について述べた。しかし、今までの議論は全て相互作用が小さいという仮
定をして「摂動論」で扱ってきた。相互作用が大きい時 (つまり、結合定数が大きい時)や、摂動の精度をあげ
たい時は摂動の高次を計算する必要があり、計算は厄介だろう。非摂動で、場の理論を考えることはできない
のだろうか？また、これまで用いてきた摂動論は本当に正しいのだろうか？このセクションでは、これらの疑
問に対して議論する*40。

3.1 古典力学的解釈
まずは摂動論に対して考えよう。簡単のため、この節では 0+1次元で考える。セクション 2で扱った実ス
カラー場の理論について再び考察してみよう。

セクション 2では自由場を基本とし、相互作用は摂動論で扱っていた。自由場のラグランジアンに ϕ3 や ϕ4

の相互作用を入れ、それにより２点グリーン関数などが自由場からの補正を受けることを見た。また、その時
Feynman diagramの考え方が非常に便利であった。この節では、摂動論での結果を古典力学的に解釈するこ
とを試みる。そうすることで、非摂動の効果を予想する事ができるかもしれない。

まずは自由場の場合を考える。今何の相互作用も入っていない。１点グリーン関数 G(1)(x)は wickの定理
から０となることはすぐにわかる。２点グリーン関数 G(2)(x1, x2)は (2.17)(2.19)から、プロパゲーターであ
る。ここで補足にある (付録 B)を用いてこれらの事実を式で表すと、〈

0
∣∣∣ ϕ̂(x) ∣∣∣ 0〉 |自由場 = 0 (3.1)

〈
0
∣∣∣T (ϕ̂(x1)ϕ̂(x2)) ∣∣∣ 0〉 |自由場 = iD(x1 − x2) ∼

1

m2
(3.2)

となる。ただし、最後の関係式は (2.11)を用いて大体の係数を推測した。(3.1)と (3.2)の結果を古典力学的
に解釈しよう。今、自由場より、考えているラグランジアンは (2.2)の 0+1次元バージョン、つまり、

L =
1

2
˙ϕ(t)

2
− 1

2
m2ϕ(t)2 (3.3)

である。古典力学的にはラグランジアン Lは L = (運動エネルギー) − (ポテンシャル)である。今 1
2 ϕ̇

2 が運
動エネルギーなので、この系のポテンシャル V (ϕ)に相当する量は

V (ϕ) =
1

2
m2ϕ2 (3.4)

*40 このセクションでは「議論すること」に趣を置いているので、正しい事実を述べたわけではない。あくまで今回の卒業研究で考察
した事である。
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図 3.1 自由場のポテンシャル

である。このポテンシャルは ϕ の関数としてグラフにすると、図 3.1 となる。ポテンシャルのグラフを見る
と、(3.1)(3.2)の結果を解釈する事ができる。

今古典力学を考え、点粒子の位置を ϕ とする。このポテンシャルの中に点粒子を置いたとする。この点粒
子はポテンシャルの底 (ϕ = 0)に落ちる方向に力を受ける。運動エネルギーが 0の時、ポテンシャルの底で永
久にとまり続けるだろう。そこに、外力 Jで粒子を押してみよう。粒子は力を受け、動き始めるが、原点から
離れるにつれ復元力が強くなるので原点に戻ってくる。今ポテンシャルは２次関数なのでこの運動は調和振動
だ。ポテンシャルの形が偶関数であり、左右対称なので、原点周りで振動していても ϕ の期待値は 〈ϕ〉 = 0

だ。一方、二乗期待値 〈ϕ2〉は 0ではなく、 1
m2 程度だ。

自由場に対しても同じ事が言える。今自由場をソース関数で揺らしている。真空状態は ϕ = 0であるが、ソー
ス関数でゆらされ、図 (3.1)と同様に原点周りで振動する。真空期待値 〈0 |ϕ | 0〉はポテンシャルの形から 0に
なると予想されるが、これは wickの定理で厳密に計算した式 (3.1)と合致している。(3.2)の結果も古典的解
釈から納得できる。

次に ϕ4modelで考えてみよう。自由場のラグランジアンに − λ
4!ϕ

4 の相互作用を入れるので、

L =
1

2
˙ϕ(t)

2
− 1

2
m2ϕ(t)2 − λ

4!
ϕ4 (3.5)

=
1

2
˙ϕ(t)

2
− V (ϕ)

where V (ϕ) =
1

2
m2ϕ(t)2 +

λ

4!
ϕ4 (3.6)

である。
このポテンシャルの形を λが大きい時と小さい時でグラフの概形は図 3.2と図 3.3のようになる。今回のポ
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図 3.2 ϕ4model、λが小さいとき 図 3.3 ϕ4model、λが大きい時

テンシャルも偶関数の形をしており、なおかつポテンシャルに底がある。先ほど述べたように古典力学的に考
えると、このポテンシャル中に点粒子を置いた場合、点粒子の位置の期待値は０である。実際に ϕ4model に
おいて真空期待値 〈0 |ϕ(t) | 0〉(つまり、１点グリーン関数)を求めてみると、〈

0
∣∣∣ ϕ̂(t) ∣∣∣ 0〉 |ϕ4model = 〈ϕ(t)〉+

(
−i λ

4!

)∫
dω〈ϕ(t)ϕ(ω)4〉+O(λ2)︸ ︷︷ ︸

奇数個の wick 縮約=0

= 0

(3.7)

となる。つまり、厳密に 0 だ。これも、古典力学的に考えた予想と一致している。しかし、〈
0
∣∣∣T ϕ̂(t1)ϕ̂(t2) ∣∣∣ 0〉(つまり２点グリーン関数)は自由場の時から次のように補正を受ける。

〈
0
∣∣∣T (ϕ̂(t1)ϕ̂(t2)) ∣∣∣ 0〉 |ϕ4model = 〈ϕ(t1)ϕ(t2)〉+

(
−i λ

4!

)∫
dω〈ϕ(t1)ϕ(t2)ϕ(ω)4〉+O(λ2)︸ ︷︷ ︸

補正項

(3.8)

λが小さい時、ポテンシャルは原点付近で二次関数と大きな違いがない。つまり、自由場的な振る舞いを見
せる。しかし、ϕが０から遠ざかるとポテンシャルの 4次の項が効くようになる。この影響が (3.8)の補正項
である。一方、λ が大き時はポテンシャルは図 3.3 のように鋭くなる。4 次関数的な振る舞いが大きくなり、
幅も二次関数よりも狭くなる。これは粒子の伝搬距離が短くなり、自由場からより多くの補正が必要となるこ
とを意味していると解釈できる。
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図 3.4 ϕ3model、g が小さいとき 図 3.5 ϕ3model、g が大きい時

では、ϕ3modelはどうだろうか？ ϕ3modelの時は

L =
1

2
˙ϕ(t)

2
− 1

2
m2ϕ(t)2 − g

3!
ϕ3 (3.9)

=
1

2
˙ϕ(t)

2
− V (ϕ)

where V (ϕ) =
1

2
m2ϕ(t)2 +

g

3!
ϕ3 (3.10)

　 ϕ3modelでも同様に 〈0 |ϕ(t) | 0〉を gが小さいとして計算すると以下のようになる。〈
0
∣∣∣ ϕ̂(t) ∣∣∣ 0〉 |ϕ3model = 〈ϕ(t)〉︸ ︷︷ ︸

=0

+
(
−i g

3!

)∫
dω〈ϕ(t)ϕ3(ω)〉+O(g2)︸ ︷︷ ︸

補正項

(3.11)

この結果は gの補正により ϕの真空期待値が０からわずかにずれることを示している。g が小さい時、ポテン
シャルは図 3.4のようになる。g が小さい時原点付近だけ見れば二次関数に近い形、つまり自由場の時とよく
似た形をしている。今 gが非常に小さい時を考えているので、粒子はポテンシャルの山を乗り越えない。とは
いえ、gϕ3 の項の影響で図 3.4のようにわずかに左側の勾配が緩やかになる。これにより、原点付近でポテン
シャルが左右対称でなくなったので、真空期待値は 0にならない。この効果が (3.11)の補正項に現れている。
このように、古典力学的な考え方は場の理論においても結構役立つことが分かった。だが、次の疑問が生じ
る。g が大きい時、ポテンシャルは図 3.5のようになる。計算したらわかることだが、グラフ左側にある上に
凸の山の高さは gが大きくなるにつれ小さくなってゆく。こうすると、原点付近で揺らされている粒子はポテ
ンシャルの山を超えて −∞ に落ちていってしまわないだろうか？摂動では ϕ3model は安定であると思える
(図 3.4を見よ)。しかし、非摂動効果を考えると、なんかやばい気がしないだろうか？

また、gが非常に小さいとしても、図 3.6のように摂動の基準点をずらした場合も古典力学的に考えると、
やはり ϕは −∞に落ち込んでいきそうではないか？このように、スカラー場の理論を古典力学的な観点から
考えると非摂動の効果を予想できそうだ。例えば図 3.7のようなポテンシャルに底がない時はどの点からでも
摂動は成り立ちそうにないなぁ。次節ではこれらの疑問に答えるため具体的に摂動の収束条件を調べてみる。
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図 3.6 図 3.7

3.2 摂動は収束するか？
この節ではセクション 2で扱った実スカラー場の ϕ3modelと ϕ4modelについて摂動の収束条件を調べる。
前の節ではスカラー場の摂動論を古典力学的に解釈し、非摂動の効果を予想した。古典力学的な解釈から、
ϕ3model が非摂動でおかしな振る舞いをするのではないのかという予想ができた。では実際にこのことにつ
いて考えてみよう。まずは簡単のため真空の分配関数 Z(J = 0, g)について考えてみる。(2.31)より、

Z(J = 0, g)

Z(J = 0, g = 0)
= 〈e−i g

3!

∫
d4ωϕ3(ω)〉

=

∞∑
n=0

1

n!

(
−i g

3!

)n ∫
d4ω1 · · · d4ωn〈ϕ3(ω1) · · ·ϕ3(ωn)〉 (3.12)

である。ここで、摂動 n次の wick縮約の仕方の数を C(n)とおく。以下のように考えると、C(n) = (3n−1)!!

である事がわかる。なお、この C(n)には連結ダイアグラム、非連結ダイアグラム両方が含まれる。
まずは、一つ目の wick縮約をとる。一番左端の ϕ(ω1)とペアになる相手は残り 3n− 1個から選ぶ。よって、
一つ目の wick縮約のやり方は 3n− 1通り。

〈ϕ(ω1)ϕ(ω1) · · · · · · · · ·︸ ︷︷ ︸
3n−1 個

〉 (3.13)

次に二つ目の wick縮約をとる。今度は二つ目の ϕ(ω1)と*41ペアになる相手は残り 3n − 3個の中から選ぶ。
よって、二つ目の wick縮約のやり方は 3n− 3通り。

〈ϕ(ω1)ϕ(ω1) · · · · · · · · ·︸ ︷︷ ︸
残り 3n−3 個

〉 (3.14)

これを繰り返すと、摂動 n次の wick縮約の取り方 C(n)は
C(n) = (3n− 1)!! (3.15)

*41 もし、(3.13)で左から一つ目の ϕ(ω1)と左から二つ目の ϕ(ω1)でペアを作った場合、左から 3つ目の ϕ(ω1)から他の項と wick

縮約をとる。
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である*42。
(3.15)を用いて (3.12)をざっくり計算すると、

Z(J = 0, g)

Z(J = 0, g = 0)
∼

∞∑
n=0

1

n!

(
− ig
3!

)n

C(n)× (積分計算) (3.16)

∼
∞∑

n=0

(3n− 1)!!

n!

(
− ig
3!

)n

(3.17)

となる*43。ここで、an = (3n−1)!!
n!

(
− ig

3!

)n と置く。(3.17)の収束条件、limn→∞ |an+1

n | < 1であるので、これ
を用いて結合定数 g に対する条件を出すと、

|g| < 3! lim
n→∞

(
(n+ 1)× (3n− 1)!!

(3n+ 2)!!

)
(3.18)

となる*44。(3.18)の右辺を調べるため、

F (n) =
(n+ 1)× (3n− 1)!!

(3n+ 2)!!
(3.19)

と置いて、F (n)をグラフにしたものが図 3.8である。このグラフを見ると、n → ∞で F (n) → 0であるこ
とが読み取れる。(3.17)の収束条件が g = 0、つまり相互作用なしの場合になってしまった。摂動の高次を考
えれば考えるほど、摂動は収束しなくなるのだ。ϕ3modelは非摂動で破綻している
なお、グリーン関数に出てくる量 〈ϕ(x)e−i g

3!

∫
d4ωϕ3(ω)〉や 〈ϕ(x1)ϕ(x2)e−i g

3!

∫
d4ωϕ3(ω)〉もこれと同様の議論

をすれば、非摂動で収束しないことが示せる。
同様の議論を ϕ4modelについても考えてみる。今回の場合、C(n) = (4n− 1)である。ϕ3model の時と同様
に結合定数 λに対する条件を求めると

|λ| < lim
n→∞

4!(n+ 1)

(4n+ 3)(4n+ 1)
→ 0 (3.20)

となった。ϕ4modelも非摂動で破綻するようだ。

この節の結論は、

� �
・スカラー場の ϕ3model、ϕ4model は摂動の収束が悪い。
・非摂動では破綻する� �
という事である。
これは結構大きな問題で、実スカラー場の理論は非摂動で破綻しており、摂動という手法でしか扱えないの
だ。しかもその摂動論も摂動の高次は Feynman diagramの数が膨大になりすぎるし*45現実的には低次の摂

*42 n!!は nの二重階乗で、n!! = n(n− 2)(n− 4) · · · である。例えば 5!! = 5× 3× 1、4!! = 4× 2である。
*43 Feynman diagramの積分計算は、かなり適当に処理している。0+0次元の場の理論を考えて Feynman diagramの値を全て１
にしている、と捉えても良い。

*44 (3.16)から (3.17)の変形で次元を持った量まで省いている。(3.18)でも、次元を持った量は省略している。
*45 摂動 n次の Feynman diagramの数は大体 n!ぐらいある。
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図 3.8

動でしか扱えない*46。

*46 僕の場合、摂動 4次ぐらいでギブアップしたくなります。手計算だと。
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4 Large N approach

このセクションではこの卒業研究のメインテーマである Large N理論の考え方を述べる。Large N理論と
は場の数が非常に多い理論のことである。例えば O(N)の対称性を持つ理論の N → ∞の極限も Large N理
論である。スカラー場の理論では摂動が収束しないなどの問題点があった。しかし、Large N 理論はこれらの
問題を解決する可能性を秘めている。あえて場の数を増やすことにより摂動の収束が良くなるのだ。それ以外
にも、トポロジーとの関係など、面白い性質が現れる。
便宜上、場の添字のことをカラーと呼ぶことにしよう。場がカラーを持つことで、Feynman diagram はカ
ラーの流れが現れる。このセクションでは Large N理論の例をいくつか紹介し、それぞれのモデルの性質を
述べる。
なお、このセクションでは、d = 0 + 0次元の理論を考える。この理由は今、Feynman diagramの積分計算
よりも、場の数 Nが大きいことによる効果を調べたいからである*47。

4.1 Large N vector model(O(N))

このセクションでは O(N)対称性*48を持つ理論を考えよう。ϕi(i = 1, 2, · · · , N)を O(N)の変換をする場
とする*49。すなわち、

ϕi 7→ ϕ′i = Oijϕj (4.1)

where O : orthogonal matrix

である。O は直行行列なので、O の転置行列を tOと置くと、以下の式が成立。
OtO = tOO = 1 (4.2)

ここで ϕ⃗を

ϕ⃗ =

ϕ1

...
ϕN

 (4.3)

と置く。O(N)対称性を持つラグランジアンとして以下のものを考える。

L = −1

2
(ϕ⃗)2 − g

4!

(
(ϕ⃗)2

)2
(4.4)

ここで g は４点相互作用の結合定数である。今、場 ϕi は添字が一つであるという意味でベクトルの形をして
いるので、このような modelを vector modelと呼んでいるわけである。(4.4)はアインシュタインの規約を
用いて成分で表すと、

L = −1

2
ϕiϕi − g

4!
ϕiϕiϕjϕj (4.5)

*47 とはいえこのセクションで述べる摂動論的な性質は一般の次元でも同じ事が言える。
*48 この卒論では群論の知識を全く必要としない。
*49 今 0+0次元なので正確に言うと ϕi は「場」ではなく「変数」だ。とはいえ、「場の理論」と言うくらいなのだから、場と呼んだ方
がみんなには親近感があるのかもしれない。まあここでは「場」と呼ばせてください。
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図 4.1 Vector modelの propagator

である*50。このモデルの生成汎関数を ZV ector(J⃗ = 0, g)とすると、

ZV ector(J⃗ , g) =

(
N∏
i=1

∫
dϕi√
2π

)
exp

(
−1

2
ϕjϕj − g

4!
ϕjϕjϕkϕk + Jjϕj

)
(4.6)

である。今 ZV ector(J⃗ = 0, g = 0) = 1 となるように規格化していくことに注意しよう。この時プロパゲー
ター 〈ϕiϕj〉を計算すると、

〈ϕiϕj〉 =

(
N∏
i=k

∫
dϕk√
2π

)
ϕiϕj exp

(
−1

2
ϕlϕl

)
= δij (4.7)

となる。この式は相互作用のない自由な伝搬で、カラーに変化がないことを表している。つまり、図 4.1のよ
うに i→ j の伝搬を考えた時、i = j となる。

次に、４点相互作用においてカラーがどのように変化するかを調べてみよう。とりあえず 4点グリーン関数
の摂動 1次を求めているのが手っ取り早い。４点相互作用は例えば以下のような wick縮約をしてみる。

〈ϕiϕjϕkϕlϕa
′
ϕa

′
ϕb

′
ϕb

′
〉 = δijδkl (4.8)

等式は wickの定理と (4.7)を用いて従う。(4.8)は i = j、k = lでなければ０であることを示しているので図
4.2のようなカラーの流れがある事がわかる*51。また、次のような wick縮約をとってみよう。

〈ϕiϕjϕkϕlϕa
′
ϕa

′
ϕb

′
ϕb

′
〉 = δilδjk (4.9)

これは i = l、j = kでなければ０であることを示しているので図 4.3のようなカラーの流れがある。このよう
に、wick縮約の取り方次第で色々なカラーの流れがあるが、カラーそのものは相互作用をしても保存してい
る事がわかる。

*50 今 0+0次元の場の理論を考えているので (4.6)の exponentialの肩には積分が含まれない。
*51 今矢印の向きに意味はない。カラーの流れてる感を出したくて矢印を書いただけである。
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図 4.2 Vector modelにおけるカラーの流れ (例 1) 図 4.3 Vector modelにおけるカラーの流れ (例 2)

図 4.4 snail diagram

また、2点グリーン関数を摂動 1次まで wickの定理で計算すると以下のような結果になった。

G(2)ij = 〈ϕiϕj〉+
(
− g

4!

)
〈ϕiϕjϕa

′
ϕa

′
ϕb

′
ϕb

′
〉+O(g2) (4.10)

= δij −gN
6
δij︸ ︷︷ ︸

図 (4.5)

−g
3
δij︸ ︷︷ ︸

図 (4.6)

+O(g2) (4.11)

(4.11)の補正項はスカラー場では図 4.4のような Feynman diagramであるが、今回カラーの流れが２通り
あるため、項が二つに分かれた。(4.11)の第 2項は図 4.5に対応し、第３項は図 4.6のようなカラーの流れ対
応している。この対応は実際に wick縮約の計算過程からわかる。図 4.5の場合、ループを流れるカラー k は
1, 2, · · ·N の値を取れるので、図 4.5の確率振幅は gN のオーダーである。一方、図 4.6のようなカラーの流
れは g のオーダーである。今 N は非常に大きな値を考えているので、図 4.6のダイアグラムは図 4.5のダイ
アグラムと比べて無視できる。図 4.4 のような Feynman diagram は確率振幅にして gN のオーダーを持つ
事がわかった。図 4.4のような Feynman diagramのことを snail diagramと呼ぶことにする。図 4.7のよう
に、図 4.4の構造を組み合わせた diagramを snail diagramである。

ここで、単純に N → ∞の極限をとると摂動の補正項が発散するので、摂動が破綻してしまう。この問題
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図 4.5 snail diagramのカラーの流れ 図 4.6 snail diagramのカラーの流れ

図 4.7 snail diagramの例

図 4.8 melon diagram

を防ぐため、N → ∞の極限をとり方を以下のよう定める。

Vector model ’t Hooft limit� �
λ := gN を一定にして N → ∞ (4.12)� �

この極限をとることにより、図 4.6のようなダイアグラムは 1/N で減衰し、効かなくなる。
また、図 4.8のようなダイアグラムも、snail diagramに比べて無視できる。なぜならダイアグラムの計算結
果が 1/N かそれ以下のオーダーになり N → ∞で消えるからである。図 4.8のようなダイアグラムを melon

diagramと名付けよう。melon diagram のカラーの流れを模式的に表すと、図 4.9のようなものがある。

このことは真空のダイアグラムに対しても同じことが言える。真空の場合は効いてくるのは図 4.10のよう
なダイアグラムである。このようなダイアグラムを bubble diagramと呼ぶことにする。
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図 4.9 melon diagramの確率振幅

図 4.10 bubble diagram 図 4.11 melon diagram

図 4.12 bubble diagram 図 4.13 melon diagram

実際に摂動論を用いて ZV ector(J⃗ = 0, g)を求めると以下のような結果になった。ここで、セクション (2.7)

で得られた結果を用いた*52。

logZV ector(J⃗ = 0, g)

N
= −N + 2

24
g︸ ︷︷ ︸

図 4.10(a)

+
N + 2

144
g2︸ ︷︷ ︸

図 4.11

+
(N + 2)2

144
g2︸ ︷︷ ︸

図 4.10(b)

+O(g3) (4.13)

= f0(λ)︸ ︷︷ ︸
bubble diagram

+
f1(λ)

N
+O(

1

N2
)︸ ︷︷ ︸

N→∞ で消える

(4.14)

ここで、(4.13)の第 1項は図 4.10(a)のダイアグラムの計算結果から来ており、第 2項は図 4.11のダイアグ

*52 ここの計算は wick縮約で愚直に計算した方が良い。対称因子でやるとミスりそう。
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ラム、第 3項は図 4.10(b)のダイアグラムの計算結果から来ている。(4.14)は (4.13)を λを用いて書き直し、
N のオーダーで分類してまとめた。具体的には、

f0(λ) = − λ

24
+

λ2

144
+O(λ3) (4.15)

である。(4.14) で N → ∞ の極限をとると、残るのは f0(λ) のみである。f0(λ) には snail diagram の中で
も、図 (4.12)のようにカラーが流れているダイアグラムのみである。図 (4.13)のようなmelon diagramは N

因子が足りず決して f0(λ)に入ることができない。
この節の内容をまとめると、

Vector model 結論� �
(4.12)の Large N 極限では snail diagram(真空の場合は bubble diagram)のみが残り、それ以外は削ぎ
落とされる。� �

セクション 2で扱ったような実スカラー場の ϕ4model, ϕ3model の場合では摂動高次で膨大な数の Feynman

diagramが出てきて収拾がつかなかった。しかし、Vector model の様に Large N極限をとることにより、真
空の場合図 4.10の様に単純なお団子状のダイアグラム (bubble diagram)しか残らなくなった。これにより、
摂動の収束性が改善し、このモデルは非摂動で解く事ができる。具体的には分配関数が完全に求められると言
う事である*53。

4.1.1 Large N vector modelを非摂動で解いてみよう
この節では Large N vector model を実際に非摂動で解いてみよう。簡単のため、まずは真空の分配関数

Z(J⃗ = 0, g)を求める。(4.6)より、

ZV ector(J⃗ = 0, g) =

(
N∏
i=1

∫
dϕi√
2π

)
exp

(
−1

2
ϕjϕj − g

4!
ϕjϕjϕkϕk

)
(4.16)

である。これを補助変数 σ を用いて以下のように書き直す。

ZV ector(J⃗ = 0, g) =

(
N∏
i=1

∫
dϕi√
2π

)√
6

πg

∫ ∞

−∞
dσ exp

(
−6N

λ
σ2 − ϕkϕk(1 + 2iσ)

2

)
(4.17)

となる。(4.17) が (4.16) に等しいことは (4.17) を σ について積分すればすぐわかる。(4.17) をみると、
exponentialの方には ϕの 2次までしかないことに注意しよう。これで ϕに関する積分が可能となる。(4.17)

の ϕ積分と σ 積分の順序を交換して、先に∏N
i=1

∫
dϕi を実行すると、

ZV ector(J⃗ = 0, g) =

√
6

πg

∫ ∞

−∞
exp

(
−N

(
6

λ
σ2 +

1

2
log (1 + 2iσ)

))
(4.18)

*53 実スカラー場の ϕ4model に足を一つ生やすだけで、こんな性質が見えるのはズゴイと思う、
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となる。ここで、(4.18)の形を見ると、鞍点法の公式 (付録 C.1)が適用できることがわかる。すなわち、S(σ)
を

S(σ) =
6

λ
σ2 +

1

2
log (1 + 2iσ) (4.19)

と置くと、(4.18)の積分に最も効いてくるのは S(σ)が最小となる σ である。dS
dσ = 0を解くと、得られる解

σ0 は
σ0 =

i

4

(
1±

√
1 +

2

3
λ

)
(4.20)

である。ただし、dS
dσ = 0は 2次方程式なので解は二つある。今回は解として、-符号の方

σ0 =
i

4

(
1−

√
1 +

2

3
λ

)
(4.21)

の方を採用する*54。(4.21)の値を用いて、(4.18)を公式 (付録 C.1)で評価すると以下の式が得られる。

logZV ector(J⃗ = 0, g)

N
=

3

8λ

(
1−

√
1 +

2

3
λ

)2

− 1

2
log

(
1

2

(
1 +

√
1 +

2

3
λ

))
+O

(
1

N

)
(4.22)

なんと ZV ector(J⃗ = 0, g)が「非摂動」で求められた。分配関数が非摂動で求められたということは摂動のい
くら高次までも全てを網羅したということである。セクション 4.1で議論した f0(λ)は非摂動で、

f0(λ) =
3

8λ

(
1−

√
1 +

2

3
λ

)2

− 1

2
log

(
1

2

(
1 +

√
1 +

2

3
λ

))
(4.23)

と求められた。この式を λのべきでテイラー展開すると、

f0(λ) = − λ

24
+

λ2

144
− 5λ3

2592
+O(λ4) (4.24)

となる。(4.24)と (4.15)は整合している。つまり、(4.23)は全ての連結 snail diagramの情報を持っているこ
とになる。

今簡単のため真空の分配関数 ZV ector(J⃗ = 0, g) を求めたが、一応原理的にはソースを含んだ分配関数
ZV ector(J⃗ , g)も求めることができる。やり方は真空の時とほとんど同じである。

ZV ector(J⃗ , g) =

(
N∏
i=1

∫
dϕi√
2π

)
exp

(
−1

2
ϕjϕj − g

4!
ϕjϕjϕkϕk + Jjϕj

)
(4.25)

これに (4.17)と同様に補助変数 σ を導入すると

ZV ector(J⃗ , g) =

(
N∏
i=1

∫
dϕi√
2π

)√
6

πg

∫ ∞

−∞
dσ exp

(
−6N

λ
σ2 − ϕkϕk(1 + 2iσ)

2
− J2

2(1 + 2iσ)

)
(4.26)

*54 ここで、+符号の方を選択すると、摂動の結果を再現できない。よって、プラス符号の解は物理的でないと判断した。
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となる。ただし、J i = J(i = 1, 2, · · ·N)とおいた。今回も鞍点法を用いたいので、

S̃(σ, J) =
6

λ
σ2 +

1

2
log (1 + 2iσ)− J2

2(1 + 2iσ)
(4.27)

とおいて、S̃(σ, J)の σ に対する鞍点を求めれば良い。すなわち、

dS̃(σ, J)

dσ
=

12

λ
σ +

i

1 + 2iσ
+

iJ2

(1 + 2iσ)2
= 0 (4.28)

(4.28)は σ に対する 3次方程式なので解が存在する。(4.28)の解を σ(J)と置くと、鞍点法を用いて、

logZV ector(J⃗ , g) = −NS̃(σ(J)) (4.29)

とかける。問題はこれで終了していて、原理的にはこれで解けているはずだ。

とはいえ、非摂動のグリーン関数などは興味があるのでもう少し調べてみる。(4.28)の解 σ(J)を真空の時の
解 σ(J = 0) = σ0 を用いて

σ(J) = σ0 + x(J) (4.30)

と置く。σ0 は (4.21)であり、S′(σ0)を満たす。
今 J が微小であるとする。J が微小ならば、x(J)も微小である。(4.30)を (4.28)に代入し、x(J)の 1次ま
でで近似すると、 x(J) ∝ J2 がわかる。このことを用いて (4.29)を評価していこう。
(4.27)、(4.19)より、

S̃(σ(J), J) = S(σ(J))− J2

2(1 + 2iσ)
(4.31)

である。(4.29)より、

logZV ector(J⃗ , g) = −NS̃(σ0 + x(J))

= −N

S̃(σ0) + S̃′(σ0)︸ ︷︷ ︸
=O(J2)

x(J)︸︷︷︸
=O(J2)

+O(J6)


= −N S̃(σ0)︸ ︷︷ ︸

(4.31) を代入する

+O(J4)

= −NS(σ0)︸ ︷︷ ︸
=logZV ector(J⃗=0,g)

− NJ2

2(1 + 2iσ0)
+O(J4)

= logZV ector(J⃗ = 0, g)− J⃗2

2(1 + 2iσ0)
+O(J4) (4.32)
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最後の式変形には J⃗2 = J iJ i = NJ2 を用いた。(4.32)に (4.21)を代入すると以下の式が得られる。

log

(
ZV ector(J⃗ , g)

ZV ector(J⃗ = 0, g)

)
=

J⃗2

1 +
√

1 + 2
3λ

+O(J4) (4.33)

これが非摂動での解であるので、端点が二つのずべての連結ダイアグラムの情報をもつ。(4.33) から 2 点グ
リーン関数を求めると、

Gij =
∂2

∂J i∂j

(
ZV ector(J⃗ , g)

ZV ector(J⃗ = 0, g)

)
|J⃗=0

=
2δij

1 +
√
1 + 2

3λ
(4.34)

2点グリーン関数が非摂動で得られた。この解は λが小さいとしてテイラー展開すると、摂動で求めた (4.11)

の結果を再現することがわかる。ただし、今 N → ∞の極限の元解いているので、melon diagramなどは消
えていることに注意しよう。
同様の議論を Jの精度を上げて行えば、4点グリーン関数、6点グリーン関数も原理的には非摂動で求められ
るだろう。

4.2 Large N matrix model(U(N))

この節では場が行列の場合、つまり、二つの添字を持つ場合を考える。ここでは U(N)の理論を考えて、場
Φi

j は以下の様な変換をするとする*55。

Φ′i
j =

(
U†)i

k
Φk

l U
l
j (4.35)

行列で表すと、
Φ′ = U†ϕU (4.36)

である。ここで U は N ×N のユニタリー行列、つまり、

U† = U−1 (4.37)

を満たす。この U(N)対称性を持つラグランジアンとして以下の様なものを考える。今回も簡単のため 0+0

次元を考えよう。
L = −1

2
tr
(
Φ2
)
− g

3!
tr
(
Φ3
)

(4.38)

*55 O(N) × O(N) のモデルつまり、場は ϕij のモデルも考えられる。こちらのモデルも勉強したのだが、正直今回紹介する U(N)

のモデルと考え方がほとんど変わらない。U(N)の方のMatrixmodel には Large N QCDに繋がるのでこちらの方のみを紹介
することにした。
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図 4.14 プロパゲーターの二重線表記

今、相互作用項は
Lint = − g

3!
tr
(
Φ3
)

(4.39)

である。なお、U(N)対称性を持った相互作用項は他にも考えられる。それについては後ほど考察するとしよ
う。

真空の生成汎関数は以下の通り。

ZMatrix(J = 0, g) =

∏
i,j

∫ ∞

−∞

dReΦi
j√

2π

∫ ∞

−∞

dImΦi
j√

2π

 exp

(
−1

2
trΦ2 − g

3!
tr
(
Φ3
))

(4.40)

4.2.1 Feynman diagramの二重線記法
(4.38)のラグランジアンから、プロパゲーターを計算すると以下の様になる。

〈Φi
jΦ

k
l 〉 = δilδ

k
j (4.41)

この式は (4.38)の自由場のラグランジアンに対応する部分が − 1
2 tr(Φ

2) = − 1
2Φ

i
jΦ

j
i から従う。

ここで、(4.41)のプロパゲーターをよく見て欲しい。vector modelの時は場は一つのカラーをもち、プロパ
ゲーターを計算すると、自由伝搬でそのカラーは変わらなかった ((4.1)参照)。しかし、今回は場 Φはカラー
を二つ持っている。よって、今回はプロパゲーターを二重線で表すこととしよう (’t Hooft notation)。ただ
し、(4.41)を見ると、カラーの流れは、上付添字と下付添字、の間で起こっている。以上のことを踏まえて、
プロパゲーター (4.41)を図 4.14の様に表す。図 4.14の二重線表記は、矢印の根本側が上付添字、矢印の先端
側が下付添字となるようにカラーの流れを表している。

この二重線表記を用いると、(4.39)の 3点相互作用のカラーの流れを図で表す事ができる。(4.39)を成分表
示すると、

Lint = − g

3!
Φi

jΦ
j
kΦ

k
i (4.42)

となる。(4.42)を見ると、Φi
jΦ

j
k はカラー j を共有している。Φj

kΦ
k
i はカラー k を共有している。Φk

iΦ
i
j はカ

ラー iを共有している。このことにより、図 4.15のように相互作用のカラーの流れを表す事ができる。上付
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図 4.15 (4.39)の 3点相互作用

添字と下付添字をペアにして縮約しているので、矢印の方向は保存する。
とはいえ、図 4.14や、図 4.15の二重線表記はなかなか実感が湧かず、受け入れられない人もいると思う。そ
んな時は、たくさんの Feynman diagramの計算をして、Feynman diagramと式を照らし合わせる。そうす
ればいつの間にか、この二重線表記が便利であることに気が付く。二重線で描くことが当たり前だと思える様
になる。そうなれば、きっと受け入れられた、と言う事なのだろう*56。
図 4.14や図 4.15の二重線記法は Large N 理論と相性が良い。なぜなら、この様にカラーの流れを明示する
ことで、Feynman diagramのカラーのループによる N因子を目で見つける事ができるからだ。そのことをこ
れから具体例を用いて見てみよう。
このモデルで 2点グリーン関数の摂動 2次の項は、数係数を無視して、

〈Φi
jΦ

k
l Φ

a′
1

b′1
Φ

b′1
c′1
Φ

c′1
a′
1
Φ

a′
2

b′2
Φ

b′2
c′2
Φ

c′2
a′
2
〉 (4.43)

である。これは wickの定理で計算すれば良いのだが、例えば以下のように wick縮約をとった場合を考える。
プライム’付きの添字は相互作用におけるカラーを表し、添字の添字 1,2は相互作用の場所を表している。

〈Φi
jΦ

k
l Φ

a′
1

b′1
Φ

b′1
c′1
Φ

c′1
a′
1
Φ

a′
2

b′2
Φ

b′2
c′2
Φ

c′2
a′
2
〉 = 〈Φi

jΦ
a′
1

b′1
〉 〈Φk

l Φ
a′
2

b′2
〉 〈Φb′1

c′1
Φ

c′2
a′
2
〉 〈Φc′1

a′
1
Φ

b′2
c′2
〉 (4.44)

=
(
δib′1δ

a′
1

j

) (
δkb′2δ

a′
2

l

) (
δ
b′1
a′
2
δ
c′2
c′1

) (
δ
c′1
c′2
δ
b′2
a′
1

)
(4.45)

= δia′
2
δ
b′2
j δkb′2 δ

a′
2

l δ
c′2
c′2

(4.46)

= δil δ
k
j N (4.47)

*56 実スカラー場の Feynman diagram に慣れてきたばかりの当時の僕は、この二重線がどう便利なのか分からなかった。でも、卒
論を書いている今なら、当たり前に思える様になっている。
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図 4.16 カラーのループ (例) 図 4.17 4.44)の時点での図示

図 4.18 g2N0

計算すると最後に Nの因子が出てきた。これは先程の二重戦記法を用いると一目瞭然である。今回のカラー
の流れを図示すると、図 4.17の様になる。このことは (4.44)の段階で一度図 4.17の様にカラーの流れを図示
するとわかりやすい。具体的な計算過程から、c′2 のカラーの流れ (c′1 のカラーの流れと言って良い)から N因
子が出ているが、これは図 4.16でいう青色のカラーの流れに対応している。この青色のループ中のカラーは
1から Nの値を取れる。よってこの重複度として N因子が出てくるのだ*57。

この様に、Feynman diagramを二重線で表すと、カラーのループを見つけやすくなり、N因子の勘定がで
きる。ここで得られた結果をまとめると、

� �
・Feynman diagramを二重線で表すと、カラーの流れが追える。
・カラーのループ一つにつき、N因子がかかる。� �
なお、wick縮約の取り方によっては図の様なカラーの流れも出てくる。ただし、この様なカラーの流れの場
合、カラーのループによる N因子がかからないので Large N 極限で無視できる。

4.2.2 Large N limitと planar diagram

matrix modelにおいては、以下の様に Large N 極限をとる*58。

*57 こう言うのはいくつかの例をこなさないとなかなか慣れないものだと思う。
*58 今回も摂動が破綻しない様に λを固定して極限をとっている。
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図 4.19

matrix model ’t Hooft limit� �
λ := g2N を一定にして N → ∞ (4.48)� �

(4.48)の極限のもとで図 4.19の二つのダイアグラムを比較してみよう。
図 4.19 の二つのダイアグラムはどちらも 2 点グリーン関数の摂動 4 次のダイアグラムである。図 4.19 の
左のダイアグラムはカラーのループが二つあり、N2 因子が出ている。このダイアグラムのカラーの流れは平
面状で交差することなく書き表せることから、planar diagram と呼ばれている。一方、図 4.19 左の様なカ
ラーの流れも存在する*59。この様なカラーの流れの場合、カラーのループがないため、N の因子がかからな
い。このダイアグラムは立体的なカラーの流れをしていて、planar diagram ではない。(4.48) の極限の元、
図 4.19左のダイアグラムの確率振幅は一定の値であるが、図 4.19右のダイアグラムの確率振幅は 0になって
無視できる。
この節で得られた結果をまとめると、

� �
Large N 極限では、”planar diagram”のみが残る� �

4.2.3 Feynman diagramとトポロジー
今回は真空ダイアグラムについて考え、先程の planar diagram と non-planar diagram についてもう少
し考えてみよう。真空ダイアグラムの場合、planar diagram は図 4.20 の様なダイアグラムである。真空の
planar diagramの確率振幅を λで表すと、必ず N2 に比例する事がわかる。一方、図 4.21の様なダイアグラ
ムの確率振幅を λで表すと、N0 に比例する。実は、二重線で表した Feynman diagramはトポロジーと関係
している。2重線で表した Feynman diagramを貼り付けることのできる物体のオイラー数を χとすると、確
率振幅は λ#Nχ になる*60。例えば、図 4.21で表される様な planar diagramは球面の様なオイラー数 χ = 2

の物体*61の表面にカラーの流れを交差する事なく貼り付ける事ができる (図 4.23参照)。この様な Feynman

diagramは確率振幅が N2 に比例する。図 4.21の様なダイアグラムは χ = 2の球面の様な物体に貼り付ける

*59 wickの定理で 2点グリーン関数を計算すればこれを確かめる事ができる。
*60 ちなみに、僕はこのことは数学的に証明したわけではなく、いくら例をやっても例外が出なかったので信じることにしている。
*61 穴が n個ある物体のオイラー数 χは χ = 2− 2nである。
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図 4.20 planar diagram (χ = 2)

図 4.21 non-planar diagram (χ = 0)

ことはできないが、χ = 0のドーナッツ状の物体の表面には貼り付ける事ができる (図 4.24参照)。この様な
ダイアグラムの確率振幅は λ#N0 の形になる。卒業論文では具体的な形は書かないが、χ = −2の物体に貼り
付ける事ができる様な複雑なダイアグラムも存在し、そのようなダイアグラムの確率振幅は λ#N−2の形にな
る。もっと複雑なダイアグラムも存在するだろう*62。

この様に、matrix modelの Feynman diagramとトポロジーは関係している*63。Large N極限で残るのは
χ = 2である planar diagramだけと言うわけだ。この節の結果をまとめると、

Feynman diagramとトポロジーの関係� �
二重線で表した Feynman diagram をある図形に貼り付けるとする。カラーの流れが交差する事なく貼
り付けられる物体のオイラー数の最大値を χとすると、確率振幅は λ#Nχ の形になる。� �

*62 χ = −2までは具体例で確認した。
*63 なぜ、このような対応があるのかは分からない。背景に何か数学的な要因があるのだろうか。
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図 4.22 オイラー数と図形

図 4.23 右の平面は非常に大きな球面と考える。

図 4.24 穴が一つある物体には貼り付けられる。

matrix modelの帰結� �
Large N極限では、planar diagramのみが残り、それ以外は考えなくても良い。� �
このことは結構面白くて、トポロジーとの関係は弦理論との対応まで関係すると言われている (セクション

5参照)。wickの定理で 2点関数などをいろいろ計算してみるとわかるのだが、planar diagramは少数派であ
る。planar diagramしか効かないことにより、このモデルでは実スカラー場の摂動に比べて、摂動の収束性
が良くなっている。
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図 4.25 (4.49)の 3点相互作用 図 4.26 Large N limitの仕方

4.2.4 他の相互作用について
Matrix modelでは (4.42)の 3点相互作用を考えてきた。とはいえ、U(N)対称性を持つ相互作用は他にも
考えられる。ただし、結論としては (4.42)以外の 3点相互作用は Large N極限で無視できる。そのことにつ
いて少し述べよう。
例えば、以下の相互作用も U(N)対称性がある。

L dt
int = −gdt

3!
tr
(
Φ2
)
× tr(Φ) (4.49)

この 3 点相互作用は二重線の Feynman diagram で言うと図 4.25 の様なカラーの流れがある。この様なカ
ラーの流れの元、図 4.26の様な摂動 2次のダイアグラムを有限にしようと思えば、

λdt := g2dtN
2 (4.50)

と定義して λdt を一定にする必要がある。しかし、こうして極限を取った結合定数 gdt は (4.48)の g に比べ
無視できる。すなわち、

gdt =

√
λdt
N

� g =

√
λ√
N

(4.51)

と言うことである。結局、(4.49)の相互作用は無視する事ができる。

また、U(N)対称性を持つ相互作用として、もう一つ考えられる。

L tt
int = −gtt

3!
tr(Φ)× tr(Φ)× tr(Φ) (4.52)

この相互作用を二重線で表すと図 4.27の様になる。このカラーの流れにより、図 4.28の様な摂動 2次のダイ
アグラムを有限にしようと思えば、

λtt := g2ttN
2 (4.53)
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図 4.27 (4.49)の 3点相互作用 図 4.28 Large N limitの仕方

と定義して λtt を一定にする必要がある。しかし、こうして極限を取った結合定数 gdt は (4.48)の g に比べ無
視できる。すなわち、

gtt =

√
λtt
N

� g =

√
λ√
N

(4.54)

と言うことである。結局、(4.53)の相互作用も無視する事ができる。

4.2.5 matrix modelは”非摂動”で解けるか？
今回のmatrix modelでは Large N極限では planar diagramしか残らないことを見た。これにより摂動の
収束性がよくなり、d=0+0のこの matrix modelは非摂動で解く事ができるとされている。ただ、実際に分
配関数を求める、となると、行列の特異値や、Vandermonde determinaitなどを用いる必要があり、レベル
の高い数学が必要である。この卒業研究の期間には理解できなかったため、この卒業論文でも述べる事はでき
ない。申し訳ありませんでした。
なお、一般次元では matrix modelは非摂動で解けないとされている。でも、この先研究が進んで非摂動で解
く方法が見つかるかもしれない。この辺りはまだ謎が残っている。

4.3 Large N tensor model ((O(N)×O(N)×O(N)))

Large N理論の最後の例としてこの節では tensor modelを紹介する。これは O(N)×O(N)×O(N)の理
論で、場 ϕは O(N)の添字を３つ持つ。つまり、以下の様な変換をするとする。

ϕijk → ϕ′ijk = Oil
1O

jm
2 Okn

3 ϕijk (4.55)

where O1, O2, O3 : N ×N orthogonal matrix
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図 4.29 プロパゲーターの三重線記法

今回も簡単のため d=0+0を仮定し、O(N)3 の対称性を持つ以下のラグランジアンを考える。

L = −1

2
ϕijkϕijk − g

4!
ϕi1j1k1ϕi1j2k2ϕi2j1k2ϕi2j2k1 (4.56)

繰り返しに出てくる添字については 1から Nまで和を取っている。今回は 4点相互作用を

Lint = − g

4!
ϕi1j1k1ϕi1j2k2ϕi2j1k2ϕi2j2k1 (4.57)

として入れている。これ以外にも O(N)3 の対称性を持つ 4点相互作用は考えられるが、それについては後で
議論するとしよう。今回も簡単のためソース項 Jは０にすると、分配関数は以下の通り。

ZTensor(J = 0, g) =

∏
ijk

∫ ∞

−∞

dϕijk√
2π

 exp

(
−1

2
ϕijkϕijk − g

4!
ϕi1j1k1ϕi1j2k2ϕi2j1k2ϕi2j2k1

)
(4.58)

4.3.1 Feynman diagramの三重線記法
(4.56)からプロパゲーターを計算すると、以下の結果となる。

〈ϕijkϕi
′j′k′

〉 = δii
′
δjj

′
δkk

′
(4.59)

今回、場 ϕは３つの添字を持っている。つまり、３つのカラーを持っている。そこで、このモデルではプロパ
ゲーター (4.59)を図 4.29の様に三重線で表すこととしよう。

この三重線記法を用いると、(4.57) の 4 点相互作用は図 4.30 の様に表す事ができる。例えば相互作
用 ϕi1j1k1ϕi1j2k2ϕi2j1k2ϕi2j2k1 の i1 のカラーは一つ目の ϕ と二つ目の ϕ の間で共通しているが、これ
を図 4.30 の赤線で表している。他のカラーについても同様に色で区別してカラーの流れを表している。
ϕi1j1k1ϕi1j2k2ϕi2j1k2ϕi2j2k1 と言う数式をみると、添字が多くてごちゃごちゃしているが、図 4.30をみると一
目瞭然である*64。この様に、Feynman diagram を三重線で表すことで、カラーを追う事ができる。martix

*64 Feynman diagramという記法は本当に画期的な発明だなぁとつくづく思う。まさに天才的な発想...
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図 4.30 (4.57)の 4点相互作用

model の二重線記法と同様に、三重線記法においてもカラーのループを数えることで、N因子の勘定ができ
る。このことを実感するには、さまざまなダイアグラムを実際に計算してみるのが良い。とはいえ matrix

modelの二重線記法に慣れた人なら三重線記法もすぐ慣れると思う。

4.3.2 Large N limit と melonic diagram

Tensor modelにおいては以下のように Large N 極限をとる*65。

tensor model Large N limit� �
λ2 := g2N3　を一定にして N → ∞ (4.60)� �

この極限の元、図 4.31のような二つのダイアグラムを比較してみよう。今回は三重線で表しているが、こ
の二つのダイアグラムは vector model の時に比較した snail diagram と melon diagram である。今回の場
合、図 4.31の左の snail diagramにはカラーのループが 2つ (オレンジとピンク)あり、N2 の因子がかかる。
確率振幅を λで表すと、λ2

N になり、Large N極限で 0となってしまう。一方、図 4.31の右のmelon diagram

にはカラーのループが 3つ (オレンジ、ピンク、紫)あり、N3 の因子がかかる。確率振幅を λで表すと、λ2
になり、これは Large N極限でも一定値だ。
今回も、主に真空ダイアグラムに対して確率振幅を計算してみた。図 4.32の様な真空のmelon diagramの
確率振幅は λを用いて表すと、N3 に比例するが、それ以外のダイアグラムの確率振幅は高々N5/2 である (図
4.33参照)。これにより、tensor modelでは melon diagramが支配的である。

tensor modelで得られた結果をまとめると、

*65 今回も摂動が破綻しないように極限をとっている。
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図 4.31 tensor model snail VS melon

図 4.32 melon diagram λ#N3

図 4.33 それ以外の diagram 高々 λ#N5/2
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図 4.34 (4.61)の 4点相互作用 図 4.35 Large N limit

tensor modelの帰結� �
melon diagramのみが残り、それ以外は削ぎ落とされる。� �

4.3.3 他の相互作用について
今回は 4点相互作用として (4.57)を仮定してが、実は O(N)3 の対称性を持つ 4点相互作用は他にも考えら
れる。しかし、結論から言うと、(4.57)以外の 4点相互作用は Large N 極限で無視できる。例えば、以下の
ような 4点相互作用も O(N)3 の対称性を持つ。

L p
int = −gp

4!
ϕi1j1k1ϕi2j1k1ϕi2j2k2ϕi1j2k2 (4.61)

この相互作用は三重線でカラーの流れを表すと、図 4.34の様になる。この相互作用で摂動を破綻しない様に
Large N極限をとるやり方は、

λp := gpN
2 (4.62)

と λp を定義して、この λp を固定して N → ∞と極限を取る必要がある (図 4.35の snail diagram参照)。
しかし、以下の様に、N → ∞の極限では、結合定数 gp は (4.57)の結合定数 g に比べ無視できる。

gp =
λp
N2

� g =
λ

N3/2
(4.63)

他にも以下の様な 4点相互作用も O(N)3 の対称性を持つ。

L ds
int = −gp

4!

(
ϕi1j1k1ϕi1j1k1

)2
(4.64)

この相互作用は三重線でカラーの流れを表すと、図 4.36の様になる。この相互作用で摂動を破綻しない様に
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図 4.36 4.64の点相互作用 図 4.37 Large N limit

Large N極限をとるやり方は、

λds := gdsN
3 (4.65)

と λds を定義して、この λds を固定して N → ∞と極限を取る必要がある (図 4.37の snail diagram参照)。
しかし、以下の様に、N → ∞の極限では、結合定数 gds は (4.57)の結合定数 g に比べ無視できる。

gds =
λds
N3

� g =
λ

N3/2
(4.66)

面白いことに、(4.61)や (4.64)の相互作用では、melon diagramよりも snail diagramの方が勝つ (図 4.35、
図 4.37参照)。しかし、結合定数が圧倒的に小さいため、この様な相互作用は無視できたというわけだ。

4.3.4 tensor modelは”非摂動”で解けるか？
最後に tensor modelの非摂動的側面について述べておく。前の節で述べた通り、tensor modelで考えるべ
きダイアグラムは melon diagramのみで良い。この著しい性質により、tensor modelは非摂動で解く事がで
きる。しかし、具体的な解については、この卒業研究の期間で勉強する事ができなかった。よって、この卒業
論文でも、非摂動の解法については割愛させていただきます。申し訳ありません。
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図 5.1 弦理論と Large N QCDとの対応

5 今後の展望
このセクションでは今後の展望を述べる。今回扱った Large N理論はまだまだ面白い性質があると期待さ
れている。今回は勉強できなかったが、今後勉強していきたいこと、大学院で研究したいことを紹介する。

5.1 Large Nゲージ理論と弦理論のつながり
今回扱った Large N matrix modelの応用として、Large N QCDが挙げられる。Large N QCDは SU(N)

のゲージ理論で、量子色力学のカラー自由度が非常に多い理論と言える。ラグランジアンは以下の様な
Yang-Mills Lagrangianである。

LYM = −1

4
tr (FµνF

µν) (5.1)

ここで、Fµν と Fµν は「場の強さ」であり、共変微分の交換子から定義できる。ここでは詳しい議論をしても
仕方ないので、ざっくりと述べるが、この共変微分はゲージ変換性を持たせるためゲージ場 Aµ を導入する必
要がある。このゲージ場 Aµ が N ×N 行列であり、今回扱った matrix modelと同様の構造をしている。実
際、(5.1)から出てくる Feynman diagramを二重線で表すと、matrix model と同様のトポロジーとの関係が
そのまま成り立つ。

59



この Large N QCDが弦理論と対応しているのではないかと考えられている。弦理論では 1次元的な「ひ
も」を最小単位として考えるので、ひもの運動は世界「面」で表される。閉じた紐の場合、世界面は図 5.1

の様な立体的な物体である。弦理論では閉じた弦の生成・消滅につき結合定数 gs を割り当てる。弦理論の
Feynman diagram(世界面)の確率振幅は図 5.1の様に、世界面のトポロジーと関係している。これは matrix

modelで得られたトポロジーとの関係に似ている。図 5.1の様に、弦理論と Large N QCDを比較すると、構
造が似ている。両者の比較により、

g−1
s ∼ N (5.2)

と言う関係があると思われる。つまり、QCDの N → ∞の極限と、弱結合の弦理論が対応しているのではな
いか？と言うことを示唆している。こうした対応関係には興味があるし、ホログラフィー原理にも関係があり
そうだ。今後はこういったトピックについても勉強していきたいと思う。

5.2 SYK model

今回扱った Large N tensor modelの応用としては Sachdev-Ye-Kitaev model(SYK model)と呼ばれるモ
デルがある。これは Large N 理論の一種で、fermionのモデルとなっている。ラグランジアンは以下の通り。

L = ϕi∂τϕi +
1

q!
Ji1i2···iqϕi1ϕi2 · · ·ϕiq (5.3)

分配関数は以下の通り。

Z =

∫
DJijkl exp

(
−
J2
ijklN

q−1

2(q − 1)!J2

)
Dϕi exp

(
−
∫
dτL

)
(5.4)

今回は q 点相互作用を仮定していて (q = 4, 5, 6, · · · ) 結合定数 Jijkl は分配関数ではガウス型のウエイトを
持って足しあげられている。
実はこの SYK modelも今回扱った tensor modelと同様に、melon diagramが支配的なモデルとなっていて、
SYK modelは非摂動で解く事がでいるとされている。そして、近年この SYK modelが二次元重力 (AdS2)

の性質を示す事が示唆されている。これも AdS/CFT対応の一つと考えられる。
この様に、Large N 理論は AdS/CFT にも関係があると期待できる。大学院では AdS/CFT に関連したト
ピックについて研究をしたいと考えているので、この辺りは今度勉強していきたいと考えている。
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付録 A 数学的な公式
このセクションでは今回用いる数学の公式をまとめておく。

A.1 行列形のガウス積分
x⃗、J⃗ を N 成分のベクトルとし、Aを (N ×N)の実対称行列とする*66。この時、以下の公式が成り立つ。

� �∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxNe

i
2 x⃗·Ax⃗+iJ⃗·x⃗ =

(
(2πi)N

det(A)

) 1
2

e−
i
2 J⃗·A

−1J⃗ (付録 A.1)

� �
(証明)

今 Aは実対称行列なので、直行行列 Oを用いて対角化できる。すなわち、Oの転置を tOと表すと tO = O−1

が成り立ち、さらに以下のように Aを対角化できる。

tOAO = Λ =



λ1 0 . . . . . . 0
0 λ2 0 . . . 0
... 0

. . .
...

...
...

. . . 0
0 0 . . . 0 λN

 (付録 A.2)

(付録 A.2)より、
detA = det

(
OΛtO

)
= det(Λ) = λ1 . . . λN (付録 A.3)

さらに、y⃗ = O−1x⃗と置く。
∣∣∣∂(x1...xN )
∂(y1...yN )

∣∣∣ = |det(O)| = 1を用いて*67(A.1)左辺を変数変換すると以下の通り。

((A.1)左辺) =

∫ ∞

−∞
dx1 · · · dxN exp

(
i

2
tx̃Ax⃗+ itJ̃x⃗

)
=

∫ ∞

−∞
dy1 · · · dyN exp

(
i

2
tỹ tOAOy⃗ + i tJ̃Oy⃗

)
=

∫ ∞

−∞
dy1 · · · dyN exp

(
i

2
tỹΛy⃗ + i t(tOJ̃)y⃗

)
=

∫ ∞

−∞
dy1 · · · dyN exp

(
i

2
(λ1y

2
1 + · · ·+ λNy

2
N ) + i(tOJ⃗)1y1 + · · ·+ i(tOJ⃗)NyN

)
=

N∏
i=1

∫ ∞

−∞
dyi exp

(
−1

2
λiy

2
i + i(tOJ⃗)iyi

)
(付録 A.4)

あと yi について平方完成し、ガウス積分を実行すると、以下の結果になる。

*66 もし Aが対称行列でなくても、(A.1)左辺のように二次形式の形では Aを対称行列に組み直すことができる。
*67 今 O は直行行列なので OtO = 1、つまり 1 = det

(
OtO

)
= (det(O))2 なので det(O) = ±1 だ
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((A.1)左辺) =

√
(2πi)N

Λ1 . . . λN
exp

(
−

N∑
i=1

i

2λi

(
tOJ⃗)i

))
(付録 A.5)

ここで (付録 A.3)を代入し、exponential の肩の部分を行列で書き直すと、

((A.1)左辺) =

(
(2πi)N

detA

)1/2

exp

(
− i

2
t(tOJ̃)Λ−1(tOJ⃗)

)

=

(
(2πi)N

detA

)1/2

exp

− i

2
tJ̃OΛ−1 tO︸ ︷︷ ︸

A−1

J⃗


=

(
(2πi)N

detA

)1/2

exp

(
− i

2
J⃗Ȧ−1J⃗

)
= (A.1)の右辺 (付録 A.6)

よって (A.1)は示された。*68

A.2 wickの定理の元となる公式
(A.1)の左辺を Z(J⃗)として定義する。*69

Z(J⃗) :=

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxNe

i
2 x⃗·Ax⃗+iJ⃗·x⃗ (付録 A.7)

また、記号 〈. . . 〉I以下のように定義する。

〈f ({xi})〉 :=
1

Z(J⃗ = 0)

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxNf (({xi}) e

i
2 x⃗·Ax⃗ (付録 A.8)

ただし f ({xi})は x1, . . . xN の関数である。
この時、以下の式が成立。

nが奇数の時� �
〈xi1 . . . xin︸ ︷︷ ︸

奇数個

〉 = 0 (付録 A.9)

� �
(証明)

*68 最後の式変形では、A−1 = (OΛtO)−1 = (tO)−1Λ−1O−1 = OΛ−1 tOを用いた。
*69 これは自由スカラー場の生成汎関数の離散化バージョンと思うことが出来る。
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まずは n = 1の場合に証明する。(付録 A.9)には J⃗ は入っていないが、あえて入れると、

〈xi〉 =
1

Z(J⃗ = 0)

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxN xie

i
2 x⃗·Ax⃗

= 　 1

Z(J⃗ = 0)

(
∂

∂(iJi)
Z(J⃗)

)
J⃗=0

= 　
(

∂

∂(iJi)
e−

i
2 J⃗·A

−1J⃗

)
J⃗=0

(付録 A.10)

となる。ただし途中で (付録 A.11)を用いた。ここで、計算したらすぐわかる式

∂

∂Ji
e−

i
2 J⃗·A

−1J⃗ = −i
N∑

k=1

A−1
ik Jke

− i
2 J⃗·A

−1J⃗ (付録 A.11)

を用いると、(A.2)が 0となることがわかる。
n = 3, 5, 7, . . . の場合でも同様に 0となることが示せる*70。すなわち、

〈xi1 . . . xin︸ ︷︷ ︸
奇数個

〉 = 1

Z(J⃗ = 0)

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxN xi1 . . . xine

i
2 x⃗·Ax⃗

= 　

 1

in
∂n

∂Ji1 . . . ∂Jin︸ ︷︷ ︸
奇数階微分

e−
i
2 J⃗·A

−1J⃗


J⃗=0

=
(
(J の多項式) e−

i
2 J⃗·A

−1J⃗
)
J⃗=0

= 0

また、nが 2以上の偶数の時は以下の公式が成り立つ。

n=2の時� �
〈xixj〉 = iA−1

ij (付録 A.12)

� �
nが 2以上の偶数の時� �

〈xi1 . . . xin︸ ︷︷ ︸
偶数個

〉 = 　
∑
Wick

〈xaxb〉 . . . 〈xcxd〉 (付録 A.13)

� �
ただし∑Wick は可能な限り wick縮約をとってそれらを足し合わせよ、という意味である。wick縮約はどん

*70 (付録 A.11)をもう 2回微分しても J が expotentialの係数として残ることが重要だ。
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なものかというと、〈〉の中の項からペアを作る作業のことである。とはいえこれは口で説明するより具体的に
書いたほうがわかりやすい。
例えば、n = 4の時、

〈xixjxkxl〉 = 〈xixjxkxl〉+ 〈xixjxkxl〉+ 〈xixjxkxl〉
= 〈xixj〉〈xkxl〉+ 〈xixl〉〈xjxk〉+ 〈xixk〉〈xjxl〉 (付録 A.14)

である。n = 6の時は、〈xixjxkxlxmxn〉、〈xixjxkxlxmxn〉、〈xixjxkxlxmxn〉といったふうにWick縮約を
とる。

(A.2)の証明
この証明も、J⃗ を導入すると便利である。

〈xixj〉 =
1

Z(J⃗ = 0)

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxN xixje

i
2 x⃗·Ax⃗

= 　 1

Z(J⃗ = 0)

(
1

i2
∂2

∂Ji∂Jj
Z(J⃗)

)
J⃗=0

= 　
(

1

i2
∂2

∂Ji∂Jj
e−

i
2 J⃗·A

−1J⃗

)
J⃗=0

(付録 A.15)

ここで (付録 A.11)をもう一度微分すると得られる式

∂2

∂Ji∂Jj
e−

i
2 J⃗·A

−1J⃗ =
(
−iA−1

ij + (−iA−1
ik )(−iA−1

jl )JkJl

)
e−

i
2 J⃗·A

−1J⃗ (付録 A.16)

*71を (A.2)に代入すると、(A.2)が得られる。

((付録 A.13)の証明もどき) 例えば、n = 4の時、(付録 A.16)をさらに２回微分して得られる式を用いると、

〈xixjxkxl〉 =
1

Z(J⃗ = 0)

∫ ∞

−∞
dx1· · ·

∫ ∞

−∞
dxN xixjxkxle

i
2 x⃗·Ax⃗

= 　 1

Z(J⃗ = 0)

(
1

i4
　 ∂4

∂Ji∂Jj∂Jk∂Jl
Z(J⃗)

)
J⃗=0

= 　
(

1

i4
∂4

∂Ji∂Jj∂Jk∂Jl
e−

i
2 J⃗·A

−1J⃗

)
J⃗=0

=
1

i4

((
(−iA−1

ij )(−iA−1
kl ) + (−iA−1

il )(−iA−1
jk ) + (−iA−1

ik )(−iA−1
jl ) +O(J)

)
e−

i
2 J⃗·A

−1J⃗
)
J⃗=0

= (iA−1
ij )(iA−1

kl ) + (iA−1
il )(iA−1

jk ) + (iA−1
ik )(iA−1

jl )

= ((A.2)左辺) (付録 A.17)

さらに nが大きい時も、全く同様に計算して (A.2)を示すことができる。計算方法はシンプルで、(付録 A.11)

*71 繰り返しに出てくる添字については和を取るアインシュタインルールを用いている。
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を必要なだけ微分すれば良い。*72

*72 とはいえ、n が大きくなるにつれ計算量は膨大に増加する。僕は n=6 まで示しましたが大変でした。帰納法とかで示す方法があ
るのかなぁ。
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付録 B グリーン関数と真空期待値
ϕ̂H(x)をハイゼンベルグ描像の場の演算子とする。つまり、ϕ̂H(x)は時間に依存する。Tを時間順序積を
以下のように定義する。

T
(
ϕ̂H(x1) · · · ϕ̂H(xn)

)
:= ϕ̂H(xi1) · · · ϕ̂H(xin) (付録 B.1)

ただし i1 > i2 > · · · > in である。
この Tを用いて、以下の公式が成り立つ。

� �〈
0
∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)

) ∣∣∣ 0〉 =

∫
Dϕ ϕ(x1) · · ·ϕ(xn) exp

(
i
∫
d4yL

)∫
Dϕ exp

(
i
∫
d4yL

) (付録 B.2)

� �
ただし |0〉は真空状態、L はラグランジアンである。

また、この式から n点グリーン関数は以下のように真空期待値として表せる。

� �
G(n) (x1, · · · , xn) =

〈
0
∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)

) ∣∣∣ 0〉 (付録 B.3)

� �
((付録 B)の証明)

|ϕ〉S をシュレーディンガー描像における、場 ϕの固有状態とする。ハイゼンベルグ描像の状態 |ϕ, t〉H とする
と両者の関係は、

|ϕ, t〉H = exp

(
i

ℏ
Ĥt

)
|ϕ〉S (付録 B.4)

である。また、シュレーディンガー描像における、場の演算子を、ϕ̂S(x)とし、ハイゼンベルグ描像における、
場の演算子を、ϕ̂H(x)とする。両者の関係は以下の通り。

ϕ̂H(x) = exp

(
i

ℏ
Ĥt

)
ϕ̂S(x) exp

(
− i

ℏ
Ĥt

)
(付録 B.5)

セクション 1で行った様に、時間を離散化すると、以下の式が成り立つことがわかる。

H

〈
ϕF , tF

∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)
) ∣∣∣ϕI , tI〉

H
=

∫
Dϕ ϕ(x1) · · ·ϕ(xn) exp

(
i

ℏ

∫ tF

tI

d4xL

)
(付録 B.6)

ただし、始状態を |ϕI , tI〉H、終状態を |ϕF , tF 〉H としている。(付録 B.6)から自明に以下の式も成り立つ。
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H

〈
ϕF , tF

∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)
) ∣∣∣ϕI , tI〉

H
=

∫
Dϕ exp

(
i

ℏ

∫ tF

tI

d4xL

)
(付録 B.7)

ここで、エネルギー固有値Elの固有状態を |l〉S と置く。ただし、エネルギー固有値の低い順に l = 0, 1, 2, 3, · · ·
とする。最低エネルギー固有値を E0 = 0とすると、真空状態は |0〉 = |0〉S = |0〉H とかける。
完全系の式∑l |l〉S S 〈l| = 1を用いると、

H

〈
ϕF , tF

∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)
) ∣∣∣ϕI , tI〉

H
(付録 B.8)

=
∑
l,l′

exp ((iEltI − iEl′tF )/ℏ) S 〈l |ϕI〉S S 〈ϕF | l′〉S S

〈
l′
∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)

) ∣∣∣ l〉
S

(付録 B.9)

ここで、tI → −∞, tF → ∞の極限を考えると (付録 B.9)は El′ = El = 0(真空)しか効かず、それ以外は相
殺するだろう。よって、

H

〈
ϕF , tF

∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)
) ∣∣∣ϕI , tI〉

H
= 〈 |ϕI〉S S 〈ϕF | 0〉

〈
0
∣∣∣T (ϕ̂H(x1) · · · ϕ̂H(xn)

) ∣∣∣ 0〉
(付録 B.10)

同様に、

H 〈ϕF , tF |ϕI , tI〉H = 〈0 |ϕI〉S S 〈ϕF | 0〉 (付録 B.11)

が成り立つ。ただし、〈0 | 0〉 = 1と規格化している。
(付録 B.6)、(付録 B.7)、(付録 B.10)、(付録 B.11)より、(付録 B)が従う。

67



付録 C 鞍点法 (saddle point method)の公式
鞍点法を用いると、以下の式が示せる。� �∫ b

a

dte−NS(t) = e−NS(t0)

√
2π

N d2S
dt2 (t0)

(
1 +O

(
1

N

))
(付録 C.1)

ただし、a < t0 < bで S(t0)は S(t)の極小値� �
(証明)

これは学部レベルの公式なので、証明は割愛する。(付録 C.1)の左辺の S(t)を極小値付近でテイラー展開し
たら示せるし、O(1/N)の補正項も含めて示せる。将来この卒論を読んでいる自分は何も見ずに証明できると
信じている。
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