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1. Main concepts of this talk

apply
Quantum Entanglement in QFT - Boson-fermion duality

Often called “bosonization”

Take-home message: Boson-fermion duality can be used to analyze
entanglement in interacting QF Ts.
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1. What is the entanglement?

Entanglement = Correlations in quantum theory that cannot be explained by classical theory.

/— Example : two spin 1/2 system ~N
‘ AVAVAVY, O
A B
Bell Statle: Measurement A=1 < B=1
V)= (015 + 1110);)  E— i=l o B=l
\ A and B are correlated through superposition/

The notion of entanglement is important not only in qguantum information theory
but also in high-energy physics.
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1. How can we quantify the entanglement?

Density matrix © pag = [1has)¥as | ® O
A B

Reduced density matrix ©:  p, = Trg[pag]

Entanglement Rényi Entropy (ERE) -

S,(A) =

1 _nlogTrA[pX] N E Z+

( lim S, (A) = —Try[p,log p4l )
n-1

~— Example : Bell state ~

Bell state : 1¥a5) = = (NalNs + 04105 = S,(4) = —logTrs[pi] = log2 >0 o
2 (we set n = 2 for simplicity)

Separable state (classical correlation): [4g) = [T 41T s = S,(4) = —log Tr[p3] = 0
. J

» ERE represents how much the two systems are quantumly entangled.
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1. Quantum entanglement in QFT

In the case of QFT, there are degree of freedom on each special points.

. For (1+1)d
system A — region V

system B — region V = complemental region of V f——————— @ ——— -

— Replica method
n .. :
py = TFV[|0><0|] TI‘V[,DV] ~ Zyn (partition function)

; Replicate s : : :
. SS N L | — n sheets

Euclid
time ‘\\\\
[ - g
space

path integral Heeted ol
-sheeted manifo
\_ " /

» The ERE reduces to the partition function on the n-sheeted manifold.
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1. Quantum entanglement in QFT

The replica method works well for CFTs and free theories.

Previous works:
For (1+1)d,
o« CFT, V = single interval. [Holzhey,Larsen, Wilczek 1994]
&« massless free fermion, V. = N-intervals. [Casini, Fosco, Huerta 2005]

& massless free boson, V =two-intervals. [Calabrase, Cardy, Tonni 2011]

In those cases, we can derive the exact result of ERE.

However, the calculation of entanglement is very difficult for interacting theories:--

—_—

— difficult to calculate---

4

Y —

There are almost no examples of rigorous analytical calculations of the effects

of interactions on entanglement in QFT. 5/34




1. Boson-fermion duality

Our aim : To precisely understand how interactions contribute to entanglement in QFT.

» Our idea : Boson-fermion duallty [Karch, Tong, Turner 2019]

Fermionic theory Bosonic theory
Local operator : OF <ferm|mzat|on Local operator : OB
Discrete symmetry : Z5 > Discrete symmetry : 75
bosonization
Partition function : ZF Partition function : ZB
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1. Boson-fermion duality

Our aim : To exactly see how interactions contribute to entanglement in QFT.

» Our idea : Boson-fermion duality (arch, Tong, Turner 2019]

Fermionic theory Bosonic theory

N ferminization =
Local operator : OF - Local operator : OB

Discrete symmetry : Z5 > Discrete symmetry : 75

bosonization
@ion functio@ @ion functio@

There is a correspondence between partition functions
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1. Short summary of our work

What we did :

« By combining the replica method and boson-fermion duality, we perform rigorous analytical
calculations of the entanglement Rényi entropy (ERE) in interacting models.

« The model is the massless Thirring model (1+1 dimensions, fermion with a four-points interaction).

« We setV =V, UV, (two intervals), which allows us to observe the effect of interaction.

« Exact results reveal the non-perturbative behavior of the ERE.

massless Thirring model [Thirring 1958]

Lr = ipyhap +Z2 @y ) (P y) e
NG _J

Y
Interaction
space
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2.Boson-fermion duality
3.Entanglement in massless Thirring model

4.Results

Hh.Summary and future works
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2.Boson-fermion duality
3.Entanglement in massless Thirring model

4.Results

Hh.Summary and future works
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2. Boson-fermion duality

In (1+1) dimension, certain fermionic theories can correspond to bosonic theories.

Fermionic theory Bosonic theory
Local operator : OF <ferm|mzat|on Local operator : 08
Discrete symmetry : Z5 — Discrete symmetry : Z5
bosonization
Partition function : ZF Partition function : ZB
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2. Boson-fermion duality

In (1+1) dimension, certain fermionic theories can correspond to bosonic theories.

Fermionic theory Bosonic theory
Local operator : OF Local operator: OB
Discrete symmetry : Z5 — Discrete symmetry : Z5
bosonization
Partition function : ZF Partition function : ZB

In this talk, | will explain how a fermionic theory can be constructed
from a bosonic theory.
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2. Boson-fermion duality

An Example of boson-fermion duality

Let us consider a two-dimensional Euclidean spacetime with coordinates (x, 7g).

Z = X + it : complex coordinate
d=0,0=0;

Massless free fermion

Lr = — (3 + POD)

F =5 (WY + Py
Y(2),Y(2) : left(right) moving fermion

(W@t w) =

9/34




2. Boson-fermion duality

An Example of boson-fermion duality

Let us consider a two-dimensional Euclidean spacetime with coordinates (x, 7g).

Z = X + it : complex coordinate
d=0,0=0;

Massless free compact boson

= %aqbécb
$~¢ + 2w : compact boson
d(z,2) = p(2) + @(2)
(p(2)p(w)) = —In(z —w)

Vertex operator : V(z) =: e?@:;

(V(2)VT(w)) = ele@oM) = -

Z— W
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2. Boson-fermion duality

An Example of boson-fermion duality

Massless free fermion Massless free compact boson
L = 0y + Yoy Lp = . dpo
F = 5= (WY +$oy) p = 5- 0000
W(2), Y(2) : left(right) moving fermion Vertex operator : V(z) =: e?@.
1
t _ T =—
(W@ w)) = —— (V@VTW) = —
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2. Boson-fermion duality

An Example of boson-fermion duality

Massless free fermion Massless free compact boson
Lp= = 0y + Yoy Lp = . dpo
F = 5= (WY +$oy) p = 5-000¢
W(2), Y(2) : left(right) moving fermion Vertex operator : V(z) =: e?@.
1 1
t _ f _
[(1/)(2)1/) (w)) = Z_WJ [(V(Z)V (w)) = Z_W]

$

- Correspondence ~
Y(z) —> V(2) = ei9@,

Zy : Y(z) » —P(z) +——> Z5:9(2) » p(z) + 7
\__ J
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2. Boson-fermion duality

Boson-fermion duality

The fermionic theory 7 and the bosonic theory 75 are related to each other through

“boson-fermion

def

duality”.

(" There exists a fermionic operator O defined in Jz and a corresponding
bosonic operator O defined in Jg:

Of < Op

And the observables of the fermionic theory coincide with those of the
bosonic theory:

(Op(x)Op(y) -++) =(0p(x)0g(y) )

\-
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2. Boson-fermion duality

How do partition functions correspond ?

0.0)

time
Lo -
space

The correspondence of partition functions

» on plane R? :
ZZIT — 2?1;

The partition functions of the fermionic theory and the bosonic theory coincide
without subtlety.
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2. Boson-fermion duality

However, a subtlety arises in spacetimes with non-trivial topology, such as that of a torus.

Example: Torus
P >

AN | A
time

‘ 0 > -
space Torus

Spin structure o

< Periodicity of the fermion field along the cycles. Zr|o] does depend on g
For torus,

Zp does not depend on
Y(z+1) =+Y(2) P : Periodic B P Q
Y(z+1) = +YP(2) A : Anti-periodic ‘
—o = AA, AP, PA, PP How do partition functions correspond?
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2. Boson-fermion duality

How can we construct the fermionic theory in spacetimes with topology from the bosonic one ?

This question is answered as follows: [Karch-Tong-Turner2019]

STEP 1 : Couple the bosonic theory 7z with the topological QFT called Kitaev.

Jg X Kitaev
HK_J

Depends on the spin structure o

STEP 2 : Gauging the Z5 global symmetry.

Jp X Kitaev

— JF
Zg ~
Get the fermionic theory properly.
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2. Boson-fermion duality

STEP 1 : Kitaev

The partition function of the fermionic spin chain Kitaev is given by:

A or P

/— Example : Torus

LKitaev = (_1) Arflel

!

+Ar f[T+0]

Arflo] € {0,1} : Arf invariant
T : background Z5 gauge field

AorP

!

Arflo] =

*For (1+1)d, Arfle] can be calculated using the mod 2 index./

0,
1,

o = AA AP, PA
o = PP

~N
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2. Boson-fermion duality

STEP 1 : Kitaev

The partition function of the fermionic spin chain Kitaev is given by:

LKitaev = (_1)ATf[Q]+ATf[T+Q]
Arflo] € {0,1} : Arf invariant

T : background Z5 gauge field

/— Example : Torus ] ~N

AorP The presence of the background Z5 gauge field
changes the spin structure:

e—2or=T+p
A or P !

Let me explain the meaning on the next slide.

\_ J
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2. Boson-fermion duality

75 gauge field

Instead of a mathematical definition, | will provide a physical intuition.

We characterize the Z5 gauge field by its holonomy:

T =(T,T,), T =§ T € {0,1}
)4

I 7, valued

There are four configurations of the Z5 gauge field:

T = (0,0),(0,1),(1,0),(1,1)

o

Mathematically, the Z5 gauge field is given as an element of cohomology : T € H'(X, Z5)
X : spacetime manifold

Example : torus

\

/

The change in the spin structure: (Aharanov-Bohm effect)
T=(1,00ando=AA == T+ p=PA
T=(0,1)ando=AA == T 4o =AP
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2. Boson-fermion duality

The result of STEP 1:

Jp X Kitaev : ZB[T](_l)ATf[Q]+Arf[T+Q]

o : spin structure of spacetime X

Arflo] € {0,1} : Arf invariant

_J

D'a
ZKitaev

T € HY(X,Z5) : Z5 background gauge field
Zg|T] : partition function of the bosonic theory

with a background Z5 gauge field T
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2. Boson-fermion duality

STEP 2 : Gauging the Z5 global symmetry.

Promote the background gauge field T to a dynamical one t .

=Some fixed value =Sum over all configurations of the gauge field.
Jr X Kitaev 1
b X Kitaev . zflol = ) zf [1l(-nA7/lelearsicee
L teH1(x,75)

X : spacetime manifold, g :the number of genus

t : dynamical Z5 gauge field.
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2. Boson-fermion duality

STEP1 and STEPZ2 give the partition function of the dual fermionic theory.

Fermionization dictionary

1
Zlol=5; ) ZE[t) (-DAleivariivel

29
fermion teH'(X,Z3) boson
X : spacetime manifold o - spin structure
g . the number of genus t : 75 gauge field

X This fermionization dictionary holds for general two-dimensional Rieman surfaces, not just the torus.

The order of HY(X,Z5) is 229.
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2. Boson-fermion duality

/— Fermionization dictionary for torus (g = 1) ~N

0,0 = AA, AP, PA
Arfle] =
1,0=PP

The Z5 gauge field takes 4 configurations:

t = (0,0),(0,1),(1,0),(1,1)

1
Fermionization dictionary » ZE[AA] = 2 (Z,ll? [00] + Z£[01] + ZZ[10] — Z?[ll])
\_ fermion boson )

If we know all the partition functions of the bosonic theory Z£[t] , we can derive the partition
functions of the dual fermionic theory Z£[o].
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3.Entanglement in massless Thirring model
4. Results

H.Summary and future works
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2. Entanglement in massless Thirring model

In our study, we consider the following fermionic theory as an interacting theory.

massless Thirring model

Lp =iy o +5A@ v (P vay)

Free Dirac 4-point interaction

Y : Dirac fermion
A Thirring coupling

Remarks :

1. This model was introduced by W.E. Thirring as a solvable quantum field theory in (1+1) d.
[W.E. Thirring 1958]

2. This model is a marginal deformation of the free Dirac fermion.
— The massless Thirring model still possesses conformal symmetry.

3. The dual bosonic theory is a free compact boson. [S.R. Coleman 1975]
22/34




2. Entanglement in massless Thirring model

One of the previous results
CFT, Single interval : Vv = [0, L]
[Holzhey,Larsen, Wilczek 1994]

———-.—.————.
—— space

L

For a general CFT, the EE is given by:
S c1 L
= — oo —
3 ge

c : central charge of a CFT
e : UV cutoff scale

¥

We cannot observe the coupling dependence.

Our setting

2-interval : V=V, UV,

v Vi v V, v
—_——_————-——-———0 - — —

—— space

In our case, the EE is not determined solely by the
central charge:

SV — SVV1' Vz,C, E)

\ 4

We can see how the interaction contributes
to the entanglement.
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2. Entanglement in massless Thirring model

(P110) = (0|1,) =
\ e tg =0

path integral

V:VIUVZ

v Vl V VZ 17
- =-0—0 - -o—0- - —> Space

Y2,v Ya,v tg = +0

» py (Wi, ,) = Try[{(y,|0){0|p,)] =  Euclid —¥Lv v

time[
space

tg = —0
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2. Entanglement in massless Thirring model

\_

TFV[,O%] = Z¢1,¢2 PV(‘/JL‘/JZ) Pv(lpz» —1/J1) ~Z§2,2 — | X
gluing /: ; “2

Replica method ~
For simplicity, we consider the second Rényi entropy S,(V) = —log Try[pZ]
--------- e A
pV(lpll lpZ) — EUClld --------- —Pv v ] tg = —0
time 4
» space

4

/_ : 2-sheeted manifold

J

» We have to calculate the partition function on 2, ,
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2. Entanglement in massless Thirring model

¥, 2 can be mapped to a torus by the conformal map. [Lunin, Mathur 2001]

i=-D
a4

x :infinity
2-sheeted manifold Z,, Torus T

. (vi—uq)(w,—u-,)
cross-ratio 1 x = ——2—2% 2 < > modulus : T
(uz—u1)(v2—v1)

» Zs _ ~ Zr  The ERE reduces to partition function on a torus.
2,2
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2. Entanglement in massless Thirring model

The way to calculate the partition function on the torus Z£ is through boson-fermion duality.

massless Thirring model free compact boson
Lp=ipy*op +2 1@y (P i u
F=iPyRou +- @y tp)(wyﬂ@ Ly == 0,0 0 ¢
~
interaction fermionization ¢~¢+2n
—
Y : Dirac fermion 4 ¢ - scalar field
A : Thirring coupling 1+A= Rz R : compact boson radius
5 P> —y 13 - ¢ o p+m
It is difficult to analyze due to the interaction. It is easy to analyze.

\ g

We can obtain the partition function Zg from the bosonic side.
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2. Entanglement in massless Thirring model

The flow of our analysis :
Replica method

4

S,(V) = —108252,2
1 Conformal map

- — log(f([/) % Z!l":) f(V): Conformal factor

Boson-fermion duality

= —1log <f(V) X % |Z2[00] + zE[01] + ZE[10] — Z{'?[n]])

— _/
~

Partition functions of the free theory

We reduced the calculation of the Rényi entropy in massless Thirring model

to that of the partition functions of the free bosonic theory. y




4.Results

H.Summary and future works
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3. Results

Our analytical result
[H. F, T. Nishioka, S. Shimamori, 2023]

4
1 1
L j=2 _

A x : cross-ratio of region V
v = 9,(1) 7 : moduli of torus
93(7) A : coupling const
9;(7), j = 2,3,4 - Jacobi theta functions
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3. Results

Our analytical result
[H. F, T. Nishioka, S. Shimamori, 2023]

= 4 7]
1 1 T

Free term

A x : cross-ratio of region V
= (192(T)> 7 : moduli of torus
93(7) A : coupling const
9;(7), j = 2,3,4 - Jacobi theta functions

Consistent with previous result (free fermion).
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3. Results

Our analytical result

[H. F, T. Nishioka, S. Shimamori, 2023]

4 : ; -

$,07,2) = $,,0) ~ S log | ¥ 07(:(1 + 1) 97 (—)
2 ’ 2\YH 2 219';1_(1_) £ j j 111
\§ - _ -

A x : cross-ratio of region V
9,(1) 7 : moduli of torus
93(7) A : coupling const
9;(7), j = 2,3,4 - Jacobi theta functions

Interaction term

X =

For A = 0, this term vanishes from Jacobi identity 95(7) — 95(7) — 94(z) = 0
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3. Results

Our analytical result

[H. F, T. Nishioka, S. Shimamori, 2023]
- : ™

4
1 1
52,4 = 51,0 =5 log 1952 zﬁfz(f(l H2) o7 (1 % %
\_ ] j=2 \ |

x : cross-ratio of reg%\v |

x = 9,(7) * T: modu!i of torus Arbitrary 2
93(7) A : coupling const
9;(7), j = 2,3,4 - Jacobi theta functions

Interaction term

» We derived the Rényi entropy for an interacting QFT exactly.
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3. Results

Let us examine the entangling region dependence of the entanglement:

ASZ(-X) — Sz(V, /1) — Sz(V, O)

Small 4 Large A4
AS,(x)
oousf ] ASZ (X) / —— ]
0.012} — A=0 O'OO\ — =1
0010 A=01 -0.02} ] A=1.2
PP o0.008} PP I
ASQ 0.006 — A=02 ASQ ~0.04} — A=14
o.oo4§ — A=0.3 _o.06l — A=1.6
0.002} Tt
I — A=04 I — A=1.8
0.000 -0.08 w ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 . )\ —05 0.0 0.2 0.4 0.6 0.8 1.0 . )\ —_9
T £ T T
4 // 0+ L
— e — — 2 . CFT. V =1-interval [Holzhey et al 1994]
Tr = r=1 C 1 V—Uu
Sy = -g 1-+ log( ) ¢ : central charge,
x : cross-ratio of region V € e : UV cutoff

» Our result is consistent with previous work and new results
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3. Results

Let us examine the interaction dependence: AS,(41) = S,(V, A1) — S,(V,0)

0.02

ERE [
0.00}

~0.02}

ASH —0.045-

~0.06

~0.08}

o104 v ]

A interaction
>
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3. Results

Let us examine the interaction dependence: AS,(41) = S,(V, A1) — S,(V,0)

0.02
ERE

0.00[

~0.02}

ASQ -0.04} The ERE increases with

. weak coupling.
~0.06] pling

~0.08}

o104 v ]
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

A interaction
>
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3. Results

Let us examine the interaction dependence :

0.02

ERE

~0.10—

0.00[

-0.02:-
/A So 004}
—0.06:—

~0.08}

interaction

ASZ()D — Sz(V, ){) _ Sz(V, O)

Unlike the perturbative regime,
the ERE decreases in strong coupling
regime.

We explore the interaction dependence of the ERE, including the

non-perturbative regime.
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3. Results

Mutual Rényi information : I,(V,,V,) =S, (V) +S,(V,) —S,,(V; UV,)
(MRI)

entanglement

Il I Il Il
w [\) — (@)

I
I

R D

e x~0, x~1: reasonable behavior
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3. Results

Mutual Rényi information : ,(V,,V;,) =S,(V,) +S,,(V,) =S, (V, UV;)

(MRI)
MRI
A i
entanglement ol
0.8 — A=0
‘/\ | increase .,
Vi £ PP O 4
e —— - - — — 2 ; — A=2
0.4+
: — A=3
0.2
— A=14
00" | =
0.0 0.2 0.4 0.6 0.8 1.0 — A=5
e x~0, x~1: reasonable behavior 1 T
« MRI increase as the coupling const increase. 21 lo b+ b
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Hh.Summary and future works
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4. Summary and future works

Summary

« Entanglementis an important concept not only in quantum information theory but
also in high-energy physics.

« However, calculating the effect of interaction in QFT is a difficult task.

« We combined the replica method with boson-fermion duality to address this issue.

« We derived the ERE and MRI exactly in an interacting system and investigated the

entanglement, including the non-perturbative regime.

——— Comment on subsequent research [Maric, Bocini, Fagotti,2023] N

They explore the ERE in XXZ spin chain (¢ massless Thirring model)

» Their results are consistent with ours.
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4. Summary and future works

Future direction

* Increasing the number of intervals or replica sheets » multi partite information etc

V 74 V 7 Vs e
-——_——e—-——-——e —-——-0—=0 - - - » N> N>

higer genus
« Massive Thirring model

Lp=ipyrop +SA@ PP yu) + myy Wy

mass perturbation
(analytically tractable)

« Numerical approach [Mari¢, Bocini, Fagotti, 2023]

XXZ spin chain » We can explore the large mass region.
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Appendix



840771« —FE & DR

IVRVIMLAY MY PAE—OEEA :

[Ryu,Takayanagi 2006]

7oy oFr—IomiEs :
S . kBC3
BE ™ 4nGy

A

» ITURVTILA Y MIFRAT 774 —REBOWRICHT-LUY D25 % 7-



{F8%: HERényilFIRE (MRI) DFE & EHIKTFIE

VIRI : ITL(V]J Vz) — Sn(Vl) + Sn(Vz) — Sn(Vl U Vz)

MRI at x=1/2
081_' L L
I\/IRIA@jté <6l | TRV TI
PP I TN
]2 0.4} : a K v,
i o 9
0.2-—
R |
-1 0 1 2 3 4 5
A

ﬁﬁ@%@k%é



$8%: b Y/X—% A FRényilEEHRE(TRI)

TRI: I (A, B,

TRIOK=ZE &

0.15]

C)=S,(AuBUC)—-S,(AUuB)—-S,(BUC)—S,(CUA)

+5,(4) + 5p(B) + $,(C)

A B C
--—-———®------ = « ®---
~¢ - ¢ > | i D>

£, L 4y /..
: | — L=02l,=0,=10 =1
} | L=070,=0="0( =1
f = L=ty =0,=1,0,=05
L S~
010‘ - ‘015‘ - ‘110‘ - 1.‘5‘




{18%: T-dualitylc2WL T

ASZ(A) — Sz(V, /1) _ SZ(V) O)

AS,(2) at x =§

0.02

EREOKXKZE &

0.00[
A L

-0.02:-
ASy -0.04}

~0.06

~0.08}

~0.10 L~

-1.0

A HEEROAE S

Compact boson®T-duality :

p 2
_)_
R

A

A7 Adual =737

A>0EA<O0ITEWIHIS L TWA




{18%: T-dualitylc2 W T

Compact boson /B Sl[R] P T-duality A
S'[R] —> = S? H = St H
Orbifold Z%S 2 R
Fermionize Ferm!onize Fermionize
by 7% by 73 by 7%’
Fill«—L2s 1) = F[]]
Thirring model \
arflp] A
A

dual coupling: } = —-
1+4



{+8%: cross-ratio x & b —35 Z®moduli T DEAR

V V1 VZ
Smme———e---e—— - -  (EEEE———
_rati 4
cross-ratio x - 9,(7)
U3(7) moduli T
" X MED:-Hr=itE5 <,
A

> Im|7]
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