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1. Main concepts of this talk

Quantum Entanglement in QFT Boson-fermion duality

Often called “bosonization” 

apply

Take-home message: Boson-fermion duality can be used to analyze 
entanglement in interacting QFTs.
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1. What is the entanglement?

Entanglement = Correlations in quantum theory that cannot be explained by classical theory.

𝐴 𝐵
Bell state:

𝜓 =
1

2
↑ 𝐴 ↑ 𝐵 + ↓ 𝐴 ↓ 𝐵

𝐴 = ↑ ⟺ 𝐵 = ↑

𝐴 = ↓ ⟺ 𝐵 = ↓

𝐴 and 𝐵 are correlated through superposition

Example : two spin 1/2 system

Measurement  

The notion of entanglement is important not only in quantum information theory 
but also in high-energy physics.
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1. How can we quantify the entanglement?

Density matrix ： 𝜌AB = 𝜓𝐴𝐵 𝜓𝐴𝐵

Reduced density matrix： 𝜌𝐴 = Tr𝐵 𝜌AB 𝐴 𝐵

𝑆𝑛 𝐴 ≡
1

1 − 𝑛
log Tr𝐴 𝜌A

𝑛 , 𝑛 ∈ ℤ+

Entanglement Rényi Entropy (ERE)：

lim
𝑛→1

𝑆𝑛 𝐴 = −Tr𝐴 𝜌𝐴 log 𝜌𝐴

Bell state :   𝜓𝐴𝐵 =
1

2
↑ 𝐴 ↑ 𝐵 + ↓ 𝐴 ↓ 𝐵 ⟹ 𝑆2 𝐴 = − log Tr𝐴 𝜌A

2 = log 2 > 0

ERE represents how much the two systems are quantumly entangled.

Separable state (classical correlation):   𝜓𝐴𝐵
′ = ↑ 𝐴 ↑ 𝐵 ⟹ 𝑆2 𝐴 = − log Tr𝐴 𝜌A

2 = 0

(we set 𝑛 = 2 for simplicity)

Example : Bell state 
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1. Quantum entanglement in QFT

𝑉ത𝑉 ത𝑉

space

system 𝐴 ⟶ region 𝑉

system 𝐵 ⟶ region ത𝑉 = complemental region of 𝑉

For (1+1)d

Replica method

𝑛-sheeted manifold

𝑛 sheets

𝜌𝑉 = Trഥ𝑉 0 0

space

Euclid
time

Tr𝑉 𝜌V
𝑛 ∼ 𝑍𝑛 (partition function)

Replicate

path integral

The ERE reduces to the partition function on the 𝑛-sheeted manifold.

In the case of QFT, there are degree of freedom on each special points.
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1. Quantum entanglement in QFT

There are almost no examples of rigorous analytical calculations of the effects 
of interactions on entanglement in QFT.

Previous works:

For (1+1)d, 

 CFT, 𝑉 = single interval. [Holzhey,Larsen, Wilczek 1994]

massless free fermion, 𝑉 = 𝑁-intervals. [Casini, Fosco, Huerta 2005] 

massless free boson, 𝑉 =two-intervals. [Calabrase, Cardy, Tonni 2011]

The replica method works well for CFTs and free theories.

In those cases, we can derive the exact result of ERE.

However, the calculation of entanglement is very difficult for interacting theories…

→ difficult to calculate…
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1. Boson-fermion duality

Our idea：Boson-fermion duality [Karch, Tong, Turner 2019]

Discrete symmetry : ℤ2
𝐹

Local operator : ෠𝑂𝐹

Partition function : 𝑍𝐹

Fermionic theory

Discrete symmetry : ℤ2
𝐵

Local operator : ෠𝑂𝐵

Partition function : 𝑍𝐵

Bosonic theory

ferminization

bosonization

Our aim : To precisely understand how interactions contribute to entanglement in QFT. 
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1. Boson-fermion duality

Our idea：Boson-fermion duality [Karch, Tong, Turner 2019]

Discrete symmetry : ℤ2
𝐹

Local operator : ෠𝑂𝐹

Partition function : 𝑍𝐹

Fermionic theory

Discrete symmetry : ℤ2
𝐵

Local operator : ෠𝑂𝐵

Partition function : 𝑍𝐵

Bosonic theory

ferminization

bosonization

Our aim : To exactly see how interactions contribute to entanglement in QFT. 

There is a correspondence between partition functions
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1. Short summary of our work

What we did：

• By combining the replica method and boson-fermion duality, we perform rigorous analytical 

calculations of the entanglement Rényi entropy (ERE) in interacting models.

• The model is the massless Thirring model (1+1 dimensions, fermion with a four-points interaction).

• We set 𝑉 = 𝑉1 ∪ 𝑉2 (two intervals), which allows us to observe the effect of interaction. 

• Exact results reveal the non-perturbative behavior of the ERE.

space

Euclid
timeℒ𝐹 = 𝑖 ത𝜓 𝛾𝜇𝜕𝜇𝜓 +

𝜋

2
𝜆 ത𝜓 𝛾𝜇𝜓 ത𝜓 𝛾𝜇𝜓

massless Thirring model [Thirring 1958]

interaction
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1. Introduction

2. Boson-fermion duality

3. Entanglement in massless Thirring model

4. Results

5. Summary and future works
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2. Boson-fermion duality

In (1+1) dimension, certain fermionic theories can correspond to bosonic theories. 

Discrete symmetry : ℤ2
𝐹

Local operator : ෠𝑂𝐹

Partition function : 𝑍𝐹

Discrete symmetry : ℤ2
𝐵

Local operator : ෠𝑂𝐵

Partition function : 𝑍𝐵

ferminization

bosonization

Fermionic theory Bosonic theory
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2. Boson-fermion duality

In (1+1) dimension, certain fermionic theories can correspond to bosonic theories. 

Discrete symmetry : ℤ2
𝐹

Local operator : ෠𝑂𝐹

Partition function : 𝑍𝐹

Discrete symmetry : ℤ2
𝐵

Local operator : ෠𝑂𝐵

Partition function : 𝑍𝐵

ferminization

bosonization

In this talk, I will explain how a fermionic theory can be constructed 
from a bosonic theory.

Fermionic theory Bosonic theory
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2. Boson-fermion duality

An Example of boson-fermion duality

𝑧 = 𝑥 + 𝑖𝜏E : complex coordinate

Let us consider a two-dimensional Euclidean spacetime with coordinates 𝑥, 𝜏E .

ℒ𝐹 =
1

2𝜋
𝜓 ҧ𝜕𝜓 + ത𝜓𝜕 ത𝜓

𝜓 𝑧 𝜓† 𝑤 =
1

𝑧 − 𝑤

𝜓 𝑧 , ത𝜓 ҧ𝑧 : left(right) moving fermion

Massless free fermion

9/34
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2. Boson-fermion duality

An Example of boson-fermion duality

𝑧 = 𝑥 + 𝑖𝜏E : complex coordinate

Let us consider a two-dimensional Euclidean spacetime with coordinates 𝑥, 𝜏E .
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𝜕 = 𝜕𝑧, ҧ𝜕 = 𝜕 ҧ𝑧

ℒ𝐵 =
1

2𝜋
𝜕𝜙 ҧ𝜕𝜙

𝜑 𝑧 𝜑 𝑤 = − ln 𝑧 − 𝑤

𝜙 𝑧, ҧ𝑧 = 𝜑 𝑧 + ത𝜑 ҧ𝑧

𝜙~𝜙 + 2𝜋 : compact boson

Massless free compact boson

Vertex operator : 𝑉 𝑧 ≡: 𝑒𝑖𝜑 𝑧 :

𝑉 𝑧 𝑉† 𝑤 = 𝑒 𝜑 𝑧 𝜑 𝑤 =
1

𝑧 − 𝑤



2. Boson-fermion duality

An Example of boson-fermion duality

ℒ𝐹 =
1

2𝜋
𝜓 ҧ𝜕𝜓 + ത𝜓𝜕 ത𝜓

𝜓 𝑧 𝜓† 𝑤 =
1

𝑧 − 𝑤

𝜓 𝑧 , ത𝜓 ҧ𝑧 : left(right) moving fermion

Massless free fermion
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ℒ𝐵 =
1

2𝜋
𝜕𝜙 ҧ𝜕𝜙

Massless free compact boson

Vertex operator : 𝑉 𝑧 ≡: 𝑒𝑖𝜑 𝑧 :

𝑉 𝑧 𝑉† 𝑤 =
1

𝑧 − 𝑤



2. Boson-fermion duality

An Example of boson-fermion duality
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2𝜋
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ℒ𝐵 =
1

2𝜋
𝜕𝜙 ҧ𝜕𝜙

Massless free compact boson

Vertex operator : 𝑉 𝑧 ≡: 𝑒𝑖𝜑 𝑧 :

𝑉 𝑧 𝑉† 𝑤 =
1

𝑧 − 𝑤

𝜓 𝑧

ℤ2
𝐹 ∶ 𝜓 𝑧 → −𝜓 𝑧

Correspondence

ℤ2
𝐵 ∶ 𝜑 𝑧 → 𝜑 𝑧 + 𝜋

𝑉 𝑧 ≡: 𝑒𝑖𝜑 𝑧 :



2. Boson-fermion duality
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The fermionic theory 𝒯𝐹 and the bosonic theory 𝒯𝐵 are related to each other through 
“boson-fermion duality”.

𝒪𝐹 𝑥 𝒪𝐹 𝑦 ⋯ = 𝒪𝐵 𝑥 𝒪𝐵 𝑦 ⋯

And the observables of the fermionic theory coincide with those of the 
bosonic theory: 

There exists a fermionic operator 𝒪𝐹 defined in 𝒯𝐹 and a corresponding 
bosonic operator 𝒪𝐵 defined in 𝒯𝐵:

Boson-fermion duality

𝒪𝐹 𝒪𝐵⟺
𝑑𝑒𝑓



2. Boson-fermion duality

How do partition functions correspond ?

time

space
0 ∞

∞

The partition functions of the fermionic theory and the bosonic theory coincide 
without subtlety. 

𝑍𝐹 = 𝑍𝐵

The correspondence of partition functions 
on plane ℝ2 :
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2. Boson-fermion duality

However, a subtlety arises in spacetimes with non-trivial topology, such as that of a torus. 

𝑍𝐹 𝜚 does depend on 𝜚

𝑍𝐵 does not depend on 𝜚

time

space
0 1

𝜏

Torus

Example: Torus

=

How do partition functions correspond?

𝜓 𝑧 + 1 = ±𝜓 𝑧

𝜓 𝑧 + 𝜏 = ±𝜓 𝑧

P : Periodic
A : Anti-periodic

Spin structure 𝝔

→𝜚 = AA, AP, PA, PP

 Periodicity of the fermion field along the cycles.

For torus,
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2. Boson-fermion duality

This question is answered as follows: [Karch-Tong-Turner2019]

STEP 1 : Couple the bosonic theory 𝒯𝐵 with the topological QFT called Kitaev.

How can we construct the fermionic theory in spacetimes with topology from  the bosonic one ?

𝒯𝐵 × Kitaev

Depends on the spin structure 𝜚

STEP 2 : Gauging the ℤ2
𝐵 global symmetry.

𝒯𝐵 × Kitaev

ℤ2
𝐵 = 𝒯𝐹

Get the fermionic theory properly. 
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2. Boson-fermion duality

STEP 1 : Kitaev

ZKitaev = −1 𝐴𝑟𝑓 𝜚 +𝐴𝑟𝑓 𝑇+𝜚

Example : Torus

𝐴𝑟𝑓 𝜚 ∈ {0,1} : Arf invariant

𝑇 ∶ background ℤ2
𝐵 gauge field

A or P

A or P

𝐴𝑟𝑓 𝜚 =
0 , 𝜚 = AA, AP, PA

1 , 𝜚 = PP

※For (1+1)d, 𝐴𝑟𝑓 𝜚 can be calculated using the mod 2 index.

The partition function of the fermionic spin chain Kitaev is given by:
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2. Boson-fermion duality

STEP 1 : Kitaev

ZKitaev = −1 𝐴𝑟𝑓 𝜚 +𝐴𝑟𝑓 𝑇+𝜚

Example : Torus

The partition function of the fermionic spin chain Kitaev is given by:

The presence of the background ℤ2
𝐵 gauge field 

changes the spin structure:

𝜚 → 𝜚𝑇 = 𝑇 + 𝜚

𝑇

A or P

A or P

16/34

𝐴𝑟𝑓 𝜚 ∈ {0,1} : Arf invariant

𝑇 ∶ background ℤ2
𝐵 gauge field

Let me explain the meaning on the next slide.



2. Boson-fermion duality

The change in the spin structure: (Aharanov-Bohm effect)

𝑇 = 1,0 and 𝜚 = AA 𝑇 + 𝜚 = PA

𝑇 = 0,1 and 𝜚 = AA 𝑇 + 𝜚 = AP

…

17/34

𝑇 = 𝑇1, 𝑇2 , 𝑇𝐼 = ර
𝛾𝐼

𝑇 ∈ 0,1

We characterize the ℤ2
𝐵 gauge field by its holonomy:

ℤ2 valued

Mathematically, the ℤ2
𝐵 gauge field is given as an element of cohomology : 𝑇 ∈ 𝐻1 𝑋, ℤ2

𝐵

Example : torus

ℤ𝟐
𝑩 gauge field

There are four configurations of the ℤ2
𝐵 gauge field:

𝑇 = 0,0 , 0,1 , 1,0 , 1,1

𝑋 : spacetime manifoldInstead of a mathematical definition, I will provide a physical intuition.

𝛾1

𝛾2

𝑇



2. Boson-fermion duality

𝒯𝐵 × Kitaev : 𝑍𝐵 𝑇 −1 𝐴𝑟𝑓 𝜚 +𝐴𝑟𝑓 𝑇+𝜚

𝜚 : spin structure of spacetime 𝑋

𝐴𝑟𝑓 𝜚 ∈ {0,1} : Arf invariant

𝑇 ∈ 𝐻1 𝑋, ℤ2
𝐵 : ℤ2

𝐵 background gauge field

𝑍𝐵 𝑇 : partition function of the bosonic theory

with a background ℤ2
𝐵 gauge field 𝑇

ZKitaev

The result of STEP 1 :
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2. Boson-fermion duality

𝒯𝐵 × Kitaev

ℤ2
𝐵

Promote the background gauge field 𝑇 to a dynamical one 𝑡 . 

=Some fixed value =Sum over all configurations of the gauge field. 

𝑍𝑋
𝐹 𝜚 =

1

2𝑔
෍

𝑡∈𝐻1 𝑋, ℤ2
𝐵

𝑍𝑋
𝐵 𝑡 −1 𝐴𝑟𝑓 𝜚 +𝐴𝑟𝑓 𝑡+𝜚:

𝑋 : spacetime manifold,    𝑔 : the number of genus

𝑡 : dynamical ℤ2
𝐵 gauge field. 

STEP 2 : Gauging the ℤ𝟐
𝑩 global symmetry.
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2. Boson-fermion duality

𝑋 : spacetime manifold

𝑔： the number of genus

𝑍𝑋
𝐹 𝜚 =

1

2𝑔
෍

𝑡∈𝐻1 𝑋, ℤ2
𝐵

𝑍𝑋
𝐵 𝑡 −1 𝐴𝑟𝑓 𝜚 +𝐴𝑟𝑓 𝑡+𝜚

fermion boson

𝜚：spin structure

𝑡： ℤ2
𝐵 gauge field

Fermionization dictionary

STEP1 and STEP2 give the partition function of the dual fermionic theory.

…

𝛾1

𝛾2

𝛾3

𝛾4
…

※ This fermionization dictionary holds for general two-dimensional Rieman surfaces, not just the torus.

The order of 𝐻1 𝑋, ℤ2
𝐵 is 22𝑔.
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2. Boson-fermion duality

Fermionization dictionary for torus 𝑔 = 1

𝛾1

𝛾2 𝑡 = 0,0 , 0,1 , 1,0 , 1,1

The ℤ2
𝐵 gauge field takes 4 configurations:

𝐴𝑟𝑓 𝜚 =
0 , 𝜚 = AA, AP, PA

1 , 𝜚 = PP

𝑍𝐓
𝐹 AA =

1

2
𝑍𝐓
𝐵 00 + 𝑍𝐓

𝐵 01 + 𝑍𝐓
𝐵 10 − 𝑍𝐓

𝐵 11Fermionization dictionary

If we know all the partition functions of the bosonic theory 𝑍𝐓
𝐵 𝑡 , we can derive the partition 

functions of the dual fermionic theory 𝑍𝐓
𝐹 𝜚 .

21/34
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massless Thirring model

𝜓：Dirac fermion

𝜆 : Thirring coupling 

ℒ𝐹 = 𝑖 ത𝜓 𝛾𝜇𝜕𝜇𝜓 +
𝜋

2
𝜆 ത𝜓 𝛾𝜇𝜓 ത𝜓 𝛾𝜇𝜓

4-point interactionFree Dirac

In our study, we consider the following fermionic theory as an interacting theory.

Remarks : 

1. This model was introduced by W.E. Thirring as a solvable quantum field theory in (1+1) d. 

2. This model is a marginal deformation of  the free Dirac fermion.

→ The massless Thirring model still possesses conformal symmetry.

3. The dual bosonic theory is a free compact boson. 

[W.E.  Thirring 1958]

[S.R. Coleman 1975]

22/34
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2. Entanglement in massless Thirring model

ത𝑉 𝑉 ത𝑉

space

CFT, Single interval : 𝑽 = 𝟎, 𝑳

𝐿

For a general CFT, the EE is given by:

𝑆𝑉 =
𝑐

3
log

𝐿

𝜖
𝑐 : central charge of  a CFT
𝜖 : UV cutoff scale

We cannot observe the coupling dependence.

[Holzhey,Larsen, Wilczek 1994]

One of the previous results

ത𝑉 𝑉1 ത𝑉

space

2-interval : 𝑽 = 𝑽𝟏 ∪ 𝑽𝟐

In our case, the EE is not determined solely by the 
central charge:

𝑆𝑉 = 𝑆𝑉 𝜆, 𝑉1, 𝑉2, 𝑐, 𝜖

𝑉2 ത𝑉

We can see how the interaction contributes 
to the entanglement.

Our setting
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2. Entanglement in massless Thirring model

Replica method

𝑉1
space

𝑉2

𝑉 = 𝑉1 ∪ 𝑉2

Euclid
time

space

24/34

𝜓1 0 = 0 𝜓2 =

𝜌𝑉 𝜓1, 𝜓2 = Trഥ𝑉 𝜓1 0 0 𝜓2 =

ത𝑉 ത𝑉ത𝑉

path integral



2. Entanglement in massless Thirring model

Replica method

Euclid
time

space

25/34

𝜌𝑉 𝜓1, 𝜓2 =

For simplicity, we consider the second Rényi entropy 𝑆2 𝑉 = − log Tr𝑉 𝜌𝑉
2

Tr𝑉 𝜌𝑉
2 = σ𝜓1,𝜓2

𝜌𝑉 𝜓1, 𝜓2 𝜌𝑉 𝜓2, −𝜓1 ~ 𝑍Σ2,2
𝐹 = Σ2,2

2-sheeted manifold

We have to calculate the partition function on Σ2,2

gluing



Σ2,2 can be mapped to a torus by the conformal map. [Lunin, Mathur 2001]

cross-ratio：𝑥 =
𝑣1−𝑢1 𝑣2−𝑢2

𝑢2−𝑢1 𝑣2−𝑣1
modulus：𝜏

𝑍Σ2,2
𝐹 ∼ 𝑍𝐓

𝐹 The ERE reduces to partition function on a torus.

2-sheeted manifold Σ2,2 Torus 𝐓
× : infinity

26/34
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massless Thirring model

ℒ𝐹 = 𝑖 ത𝜓 𝛾𝜇𝜕𝜇𝜓 +
𝜋

2
𝜆 ത𝜓 𝛾𝜇𝜓 ത𝜓 𝛾𝜇𝜓

interaction

𝜓：Dirac fermion

𝜆 : Thirring coupling 

ℤ2
𝐹： 𝜓 → −𝜓

free compact boson

ℒ𝐵 =
𝑅2

8𝜋
𝜕𝜇𝜙 𝜕𝜇𝜙

𝜙：scalar field

𝑅 : compact boson radius 

ℤ2
𝐵： 𝜙 → 𝜙 + 𝜋

𝜙 ~ 𝜙 + 2𝜋fermionization

1 + 𝜆 =
4

𝑅2

It is difficult to analyze due to the interaction. It is easy to analyze.

We can obtain the partition function 𝑍𝐓
𝐹 from the bosonic side.

The way to calculate the partition function on the torus 𝑍𝐓
𝐹 is through boson-fermion duality.

27/34
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𝑆2 𝑉 = − log𝑍Σ2,2
𝐹

= − log 𝑓 𝑉 × 𝑍𝐓
𝐹

= − log 𝑓 𝑉 ×
1

2
𝑍𝐓
𝐵 00 + 𝑍𝐓

𝐵 01 + 𝑍𝐓
𝐵 10 − 𝑍𝐓

𝐵 11

The flow of our analysis : 

Replica method

Conformal map

Boson-fermion duality

Partition functions of the free theory

We reduced the calculation of the Rényi entropy in massless Thirring model 
to that of the partition functions of the free bosonic theory.
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2. Entanglement in massless Thirring model

𝑓 𝑉 : Conformal factor
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3. Results
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interaction term

We derived the Rényi entropy for an interacting QFT exactly.

Arbitrary 𝝀
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Δ𝑆2 𝑥 = 𝑆2 𝑉, 𝜆 − 𝑆2 𝑉, 0

Our result is consistent with previous work and new results

3. Results

Let us examine the entangling region dependence of the entanglement : 

Δ𝑆2 𝑥

𝑥 ∶ cross-ratio of region 𝑉
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3. Results

Δ𝑆2 𝜆 at 𝑥 =
1

2

ERE

interaction

The ERE increases with
weak coupling.

Δ𝑆2 𝜆 = 𝑆2 𝑉, 𝜆 − 𝑆2 𝑉, 0Let us examine the interaction dependence :

31/34



3. Results

Δ𝑆2 𝜆 at 𝑥 =
1

2

ERE

interaction

We explore the interaction dependence of the ERE, including the 
non-perturbative regime. 

Unlike the perturbative regime,
the ERE decreases in strong coupling
regime.

Δ𝑆2 𝜆 = 𝑆2 𝑉, 𝜆 − 𝑆2 𝑉, 0Let us examine the interaction dependence :
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3. Results
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• 𝑥 ∼ 0, 𝑥 ∼ 1： reasonable behavior
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• 𝑥 ∼ 0, 𝑥 ∼ 1： reasonable behavior

• MRI increase as the coupling const increase.
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4. Summary and future works

• Entanglement is an important concept not only in quantum information theory but 

also in high-energy physics.

• However, calculating the effect of interaction in QFT is a difficult task.

• We combined the replica method with boson-fermion duality to address this issue.

• We derived the ERE and MRI exactly in an interacting system and investigated the 

entanglement, including the non-perturbative regime. 

Summary

Comment on subsequent research [Marić, Bocini, Fagotti,2023]

Their results are consistent with ours.

They explore the ERE in XXZ spin chain (  massless Thirring model)
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4. Summary and future works

• Increasing the number of intervals or replica sheets

Future direction

ℒ𝐹 = 𝑖 ത𝜓 𝛾𝜇𝜕𝜇𝜓 +
𝜋

2
𝜆 ത𝜓 𝛾𝜇𝜓 ത𝜓 𝛾𝜇𝜓 +𝑚ഥ𝜓𝜓

… …

higer genus

• Massive Thirring model 

• Numerical approach 

ത𝑉 𝑉1 𝑉2 𝑉3ത𝑉 ⋯

[Marić, Bocini, Fagotti, 2023]

mass perturbation
(analytically tractable)

XXZ spin chain We can explore the large mass region.

multi partite information etc
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Appendix



エンタングルメントエントロピーの面積則：

𝑆 𝑉 =
1

4 𝐺𝑁
𝐴 𝛾𝑉

𝛾𝑉𝑉

d次元

d+1次元

[Ryu,Takayanagi 2006]

付録:ホログラフィー原理との関係

ブラックホールの面積則：

𝑆𝐵𝐻 =
𝑘𝐵𝑐

3

4ℏ𝐺𝑁
𝐴

エンタングルメントはホログラフィー原理の研究に新たな切り口を与えた



付録: 相互Rényi情報量(MRI)の結合定数依存性

MRI：𝐼𝑛 𝑉1, 𝑉2 = 𝑆𝑛 𝑉1 + 𝑆𝑛 𝑉2 − 𝑆𝑛 𝑉1 ∪ 𝑉2

𝑉1 𝑉2

エンタングル

MRI at x=1/2

MRIの大きさ

相互作用の大きさ



付録: トリパータイトRényi情報量(TRI)

TRI：𝐼𝑛 𝐴, 𝐵, 𝐶 = 𝑆𝑛 𝐴 ∪ 𝐵 ∪ 𝐶 − 𝑆𝑛 𝐴 ∪ 𝐵 − 𝑆𝑛 𝐵 ∪ 𝐶 − 𝑆𝑛 𝐶 ∪ 𝐴
+𝑆𝑛 𝐴 + 𝑆𝑛 𝐵 + 𝑆𝑛 𝐶
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TRIの大きさ
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付録: T-dualityについて

T-dual

Compact bosonのT-duality：

𝑅 →
2

𝑅

𝜆 → 𝜆dual = −
𝜆

𝜆 + 1

𝜆 > 0と𝜆 < 0は互いに対応している

Δ𝑆2 𝜆 = 𝑆2 𝑉, 𝜆 − 𝑆2 𝑉, 0

Δ𝑆2 𝜆 at 𝑥 =
1

2

EREの大きさ

相互作用の大きさ



付録: T-dualityについて



付録: cross-ratio 𝒙 と トーラスのmoduli 𝝉 の関係

𝑥 =
𝜗2 𝜏

𝜗3 𝜏

4

ത𝑉 𝑉1 𝑉2

cross-ratio 𝑥

moduli 𝜏

簡単のため𝜏 = 𝑖 ℓとおく。𝑥

𝐼𝑚[𝜏]
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