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Abstract: 量子エンタングルメントは量子論特有の相関であり、量子情報理論のみならず物
性理論や場の量子論においても非常に重要な概念である。例えばエンタングルメントエントロ
ピーを調べることによって臨界現象や物質相の情報を引き出すことができる。さらに、ブラッ
クホールのエントロピーに類似した面積則が成り立つことから、エンタングルメントを調べる
ことはホログラフィー原理の理解につながると期待されている。しかし、場の量子論において
エンタングルメントを厳密に計算することは自由場を除き非常に難しいのが現状である。そこ
で我々はこの問題を解決するためボソン/フェルミオン双対性に注目した。ボソン/フェルミオ
ン双対性とはあるボソンの理論と別のあるフェルミオンの理論との間の双対性である。我々は
このアイデアを用い、相互作用を含むあるモデルに対してエンタングルメントRényiエントロ
ピーが厳密に計算できる例を示した。さらに結合定数が十分大きい場合、エンタングルメント
Rényiエントロピーは減少することを示した。
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1 イントロダクション

量子エンタングルメントとは古典的に説明できない量子論特有の相関であり、その相関の大き
さを表す量がエンタングルメントエントロピーである。これは量子情報理論を支える基本的な
概念であり、幅広い応用の幅を持つ。例えば量子エンタングルメントは量子的な情報の伝達手
段である量子テレポーテーションで中心的な役割を果たす [1]。また、次世代の計算手法である
量子コンピューティングにおいても量子エンタングルメントはなくてはならない概念である [2]。
また、量子情報理論の分野だけでなく、物性物理や場の量子論においても量子エンタングルメ
ントは重要な概念である。例えばエンタングルメントエントロピー調べることにより、物質相
の構造や臨界現象における臨界指数といった重要な情報を引き出すことができる [3–6]。このよ
うに、量子エンタングルメントは現代物理学において非常に重要な概念である。
また、場の量子論においても量子エンタングルメントはホログラフィー原理の研究で重要

な役割を果たしている。これについては少し詳しく述べよう。場の量子論は特殊相対性理論と
量子論を含む一般的な理論であり、素粒子論の基本的かつ重要な理論である。素粒子論の最終
目標は全ての物理現象を説明する究極の理論を作ることにあろう。しかし現状では重力と量子
論の統合は未だ完全な形ではない。量子重力理論の研究において重要な概念がホログラフィー
原理である。ホログラフィー原理は以下のブラックホールエントロピーの面積則から端を発し
た [7, 8]。

SBH = kBc
3

4ℏGN
A . (1.1)

ここで、kB, c, ℏ, GN , Aはそれぞれボルツマン定数、光速、ディラック定数、ニュートン定
数、ブラックホールの表面積である (以下、kB = c = ℏ = 1の単位系を用いる)。本来、エントロ
ピーは示量性であるため系の体積に比例するはずであるが、この公式はブラックホールのエント
ロピーが表面積に比例することを主張している。公式の中に熱統計力学、電磁気学、量子力学、
相対性理論の基本的な定数が全て入っていることからもこの式は究極の理論を探究する上で非
常に重要な手掛かりと言える。この公式がきっかけとなり、「ある時空Mにおける重力理論は、
その境界 ∂Mにおける重力を含まない量子論と等価である」というホログラフィー原理が示唆
されるようになり、その代表的な具体例がAdS/CFT対応である [9]。近年、ホログラフィー原
理の研究においてエンタングルメントが注目されるきっかけは、以下の Ryu-Takayanagi公式
の発見である [10, 11]。

S(V ) = 1
4GN

A(γV ) . (1.2)

ここで、S(V )はある共形場理論 (CFT)の領域 V に関するエンタングルメントエントロピーで
あり、A(γV )はAdS時空において領域 V と同じ境界を持つ空間 γV の最小面積である。ここで、
公式 (1.1)と (1.2)を見比べると同じ形をしていることがわかる。このことから量子エンタング
ルメントは時空の構造を理解する上で重要な手掛かりと考えられ、ホログラフィー原理の研究
おいて新たな切り口を与えた。エンタングルメントエントロピーは量子論で計算可能な量であ
ることから、場の量子論でも研究されている [12, 13]。
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ここで、場の量子論におけるエンタングルメントの解析方法について述べよう。エンタン
グルメントエントロピー (EE)とエンタングルメントRényiエントロピー (ERE)は以下のよう
に定義される。

S(V ) := −TrV [ρV log ρV ] , (1.3)

Sn(V ) := 1
1− n

log TrV [ρnV ] . (1.4)

ここで、ρV は領域 V に関する縮約密度行列である。S(V )は定義から縮約密度行列に関する
von-Neumann エントロピーになっており、エンタングルメントの大きさを表す。Sn(V )は自然
数 nを用いた EEの一般化である。もし EREの定義を n ∈ Rと拡張し、n → 1の極限を取れ
ば EEに一致する;

lim
n→1

Sn(V ) = S(V ) . (1.5)

通常、EREの方が EEよりも計算しやすいため、まず一般の nで EREを計算してから n→ 1
の極限を取ることで EEを求める、というのが常套手段である。場の量子論において一般的な
EREの計算手法はレプリカ法と呼ばれる。レプリカ法では元々の時空を n個に複製し、適切な
境界条件でそれらを繋ぎ合わせる (下図参照)。

...

ψ1

ψ2

ψn

そして繋ぎ合わされた時空 (レプリカ多様体という)での分配関数 Zn を計算することにより、
EREを求める。本文で詳しく説明するが、レプリカ法では元々の時空を n個複製した分、n個
の場が現れる。特に自由場の場合は “うまい”基底変換が存在するため、見通し良く EREを計
算することができる [12–18]。ところが相互作用があるような系に対してはこのような性質の良
い基底変換は一般に存在しないため、レプリカ法を用いた EREの解析は困難を極める1。
本修士論文では特に以下の作用で記述される 2次元のmassless Thirring modelに着目する;∫

d2x

[
i ψ̄ /∂ ψ + π

2
λ (ψ̄ γµ ψ)(ψ̄ γµ ψ)

]
. (1.6)

この理論は第 2項から明らかなようにフェルミオン 4点結合を含む相互作用がある系である。
我々はmassless Thirring modelの EREの解析解を厳密に導出し、エンタングルメント構造を
調べた。その際、鍵になるのはボソン/フェルミオン双対性である [19]。ボソン/フェルミオン双

1もちろん結合定数が非常に小さい場合は摂動論を使うことができ、その場合はレプリカ法は有効な解析方法の
一つである。
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対性を使うことによってmassless Thirring modelは free compact boson modelと等価である
ことが知られているため、読者の中にはmassless Thirring modelの EREは容易に導出できる
と思う者もいるだろう。ところが領域 V が非連結である時、レプリカ多様体は一般に非自明な
サイクルを持つ。例えば、領域 V が二つの連結な領域から成る場合、レプリカ多様体は共形変
換によってトーラスと結びつく。そのような場合はもちろん局所的な演算子の対応は成立する
が、それだけでは両理論が完全に等価であると結論付けることはできない。そこで近年、トー
ラスのような非自明なサイクルを持つような多様体上でボソン理論とフェルミオン理論がどの
ように対応するかの議論が精密になされた [20, 21]。彼らの結果によると、2次元のボソン理論
TBがアノマリーのない大域的対称性 ZB

2 を持つとき、対応するフェルミオン理論 TFとボソン
理論 TBの関係は模式的に以下のように書かれる;

TF = TB × Kitaev
ZB

2
, (1.7)

ここで、TB×Kitaevは元のボソン理論 TBに 2次元位相論的場の理論 (TQFT) Kitaevを結合さ
せることを意味する。また、ZB

2 で “割る”とは ZB
2 対称性でゲージ化することを表す。(これら

の概念は本文中で詳しく解説する。)例えば TQFT Kitaevは R2のような非自明なサイクルを
持たないような多様体に対しては自明になるが、トーラスのような多様体の場合は非自明にな
る。我々はこの公式 (1.7)を非自明なサイクルを持つレプリカ多様体上の場の量子論に適用する
ことにより、massless Thirring modelの EREの厳密な表式を非摂動的に導出した。さらに得
られた結果を用いてmassless Thirring modelのエンタングルメント構造の解析を行った。
この修士論文は大きく分けて三つのパートから構成されている。まずパート Iでは本研究

で最も重要な概念の一つであるボソン/フェルミオン双対性をレビューを行う。セクション 2で
は 2次元平面上の massless free fermionと free compact boson modelを例に取りながらボソ
ン/フェルミオン双対性の入門的な導入を行う。また、セクション 3.5でそれを拡張し、非自明
なサイクルをもつ多様体上のボソン/フェルミオン双対性をレビューする。また、ボソン/フェ
ルミオン双対性の応用としてトーラス上のmassless Thirring modelを扱う。次に、パート IIで
は本研究のもう一つの重要な概念であるエンタングルメントをレビューする。セクション 4で
は量子力学からエンタングルメントの基礎知識を解説し、セクション 5では、場の量子論にお
けるエンタングルメントの計算手法であるレプリカ法をレビューする。そして、6、7では本研
究にとって重要な先行研究を 2つレビューする。そしてパート IIIではいよいよ研究内容を述べ
る。まずセクション 8で具体的な問題設定を行い、セクション 9で解析に必要な共形変換を述
べる。セクション 10では本研究のメインの結果であるmassless Thirring modelのエンタング
ルメントRényiエントロピーを導出し、領域 V の形状とThirring coupling依存性を議論する。
最後のセクション 11ではこの修士論文の内容をまとめ、本研究の今後の展望を述べる。
また、この修士論文では以下のような表記を用いる。まず、重要な項目は以下の水色のボッ

クスを用いる。

(重要な項目)
～～～～～～～～～～～～
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次に、以下のオレンジバーは補足説明や例、証明などに用いる。もし、説明を読んで「は
いはい分かる分かる」となった場合はオレンジバーの記事は読む必要はない。もし「ん？どう
いうことかな？」となった場合や証明に興味がある場合は読むと良い。
補足説明
具体例
証明など

最後に、以下のグレーのボックスは数学的な定理や知られている事実を述べる際に用いる。

(数学的な定理)
(知られている事実)

～～～～～～～～～～～～

このようなグレーのボックスの記事は証明にこだわらず事実として認めると良い。
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Part I

ボソン/フェルミオン双対性(Review)

このパートではこの修士論文で重要な役割を果たすボソン/フェルミオン双対性についてレビュー
する。ボソン/フェルミオン双対性は時空の非自明なサイクルの有無によって話が異なる。そこ
で、セクション 2では 2次元平面上のmassless free fermionと free compact bosonを例に取り
ながら時空に非自明なサイクルがない場合のボソン/フェルミオン双対性について解説する。次
にセクション 3では非自明なサイクルがある時空の例としてトーラスを扱い、最後に、一般的
に成り立つ非自明なサイクルがある場合のボソン/フェルミオン双対性について解説する。

2 非自明なサイクルのない多様体上におけるボソン/フェルミオン双対性
2.1 R1,1上massless free fermion

ボソン/フェルミオン双対性が成り立っていることを理解するため、具体例として 2次元のmass-
less free fermionを扱ってみよう。このセクションの内容は割と教科書的ではあるが、この修士
論文で重要となる部分だけに絞り概要をまとめる。はじめに、作用は以下のように与えられる。

S =
∫
R1,1

dxdt iψγµ∂µψ , (2.1)

ここで、計量は ηµν = diag(1,−1)とした。また ψ := ψ†γ0は ψのDirac共役である。さらに、
γµγν = 2ηµν , µ, ν = 0, 1 を満たすガンマ行列の具体形として、以下を用いるとする。

γ0 = σx , γ1 = iσy , γ5 = −γ0γ1 = σz , (2.2)

ここで、σx, σy, σzはパウリ行列である。γ5は４次元で出てくる γ5の 2次元バージョンだが、
同じ記号 γ5を用いた。また、今 γ5 = σzより、Dirac場ψを chiral fermion ψ±(γ5の固有値±1
の固有状態)で以下のように書くとする;

ψ =

ψ+

ψ−

 . (2.3)

これを用いると作用は以下のように書き直せる。

S =
∫
dtdx i

(
ψ†

+ (∂0 − ∂1)ψ+ + ψ†
− (∂0 + ∂1)ψ−

)
. (2.4)

この作用を ψ±について変分を取ると、運動方程式は
(∂0 + ∂1)ψ− = 0
(∂0 − ∂1)ψ+ = 0 ,

(2.5)

となり、このことから ψ−が右向きに進む波、ψ+が右向きに進む波であることがわかる;

ψ− = ψ−(x− t) : right-moving→
ψ+ = ψ+(x+ t) : left-moving← .

(2.6)
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2.1.1 対称性と保存カレント
さて、このモデルの対称性について確認しよう。作用 (3.19)を見てすぐにわかるように、この
モデルには U(1)対称性とそれに付随する vector current jµがある。

U(1) : ψ′ = eiαψ, jµ = ψγµψ . (2.7)

また、今回masslessであるので、UA(1)の対称性もあり、同様に axial vector current jµAが存
在する。

UA(1) : ψ′ = eiαγ5
ψ, jµA = ψγµγ5ψ . (2.8)

UA(1)対称性について
読んでる人は知ってると思うが、念の為。UA(1)対称性はmasslessの時に成り立つ。という
のも、この UA(1)変換の元、ψは以下のように変換する。

ψ
′ = ψ′†γ0 = ψ†e−iαγ5

γ0 = ψ′†γ0 = ψ†γ0eiαγ5 = ψeiαγ5
. (2.9)

ここで、(γ5)† = γ5,{γ5, γ0} = 0を用いた。これより、質量項 ψψは UA(1)変換で ψ′ψ′ =
ψe2iαγ5

ψとなるので不変ではないことがわかる。一方、運動項は

ψ′γµ∂µψ
′ = ψeiαγ5

γµeiαγ5
∂µψ = ψeiαγ5

e−iαγ5
γµ∂µψ = ψγµ∂µψ , (2.10)

となり、不変である。途中の変形では {γ5, γµ} = 0を用いた。
また、この UA(1)対称性に付随する保存カレント jµAはNoetherの定理から導ける。

今後のためこの 2つの保存カレント jµ, jµAの関係式を書いておこう。今回の計量では以下
の式が成り立つ。

jµA = ϵµνjν . (2.11)

ここで、ϵ01 = 1とした。この関係式は 2次元特有のものであり、後でボソン側を議論する際に
重要となる。

(2.11)の証明
成分ごとに書くと割とすぐわかる。jµAと γ5の定義より、

j0
A = ψγ0γ5ψ = −ψ (γ0)2︸ ︷︷ ︸

=1

γ1ψ = −ψγ1ψ = −j1 = j1 ,

j1
A = ψγ1γ5ψ = −ψγ1γ0γ1ψ = ψγ0 (γ1)2︸ ︷︷ ︸

=−1

ψ = −ψγ0ψ = −j0 = −j0 ,

よって、(2.11)が成り立つ。

2.1.2 正準量子化
それではこのモデルに対して正準量子化を行ってみよう。運動方程式の解は (2.6)で求めてあ
る。これを Fourier変換し、係数を演算子に格上げすることによって以下のようにmode展開
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できる2。

ψ−(x, t) =
∫ ∞

0

dp

2π

(
b(−)
p eip(x−t) + c(−)†

p e−ip(x−t)
)

ψ+(x, t) =
∫ 0

−∞

dp

2π

(
b(+)
p eip(x+t) + c(+)†

p e−ip(x+t)
)
.

(2.12)

ここで、b(−)
p , b

(+)
p は消滅演算子、 c

(−)†
p , c

(+)†
p は生成演算子で、以下の交換関係を満たす。


{
ψ±(x, t), ψ†

±(y, t)
}

= δ(x− y)

(それ以外) = 0
⇐⇒



{
b(±)
p , b(±)†

q

}
= 2πδ(p− q){

c(±)
p , c(±)†

q

}
= 2πδ(p− q)

(それ以外) = 0

. (2.13)

(2.13)の証明
これも基本的なことであるが、一応確認。⇐も⇒も似たような計算で示せる。ここでは
(2.13)右辺⇒

{
ψ−(x, t), ψ†

−(y, t)
}

= δ(x− y)だけ示す。スペース削減のため t = 0で計算
する。(2.12)より、{
ψ−(x, 0), ψ†

−(y, 0)
}

=
∫ ∞

0

dp

2π

∫ ∞

0

dq

2π

{
b(−)
p eipx + c(−)†

p e−ipx), b(−)†
q e−iqy + c(−)

q eiqy
}

=
∫ ∞

0

dp

2π

∫ ∞

0

dq

2π



{
b(−)
p , b(−)†

q

}
︸ ︷︷ ︸

=2πδ(p−q)

ei(px−qy) +
{
b(−)
p , c(−)

q

}
︸ ︷︷ ︸

=0

ei(px+qy)

+
{
c(−)†
p , b(−)†

q

}
︸ ︷︷ ︸

=0

e−i(px+qy) +
{
c(−)†
p , c(−)

q

}
︸ ︷︷ ︸

=2πδ(p−q)

e−i(px−qy)


=
∫ ∞

0

dp

2π

(
eip(x−y) + e−ip(x−y)

)
=
∫ ∞

−∞

dp

2π
eip(x−y)

= δ(x− y) . (2.14)

よって、
{
ψ−(x, 0), ψ†

−(y, 0)
}

= δ(x− y)が示せた。他の交換関係も同様に示せる。

2.1.3 相関関数
ここでは場の量子論において重要な物理量である相関関数をいくつか求めよう。真空状態 |0〉を
以下の式を満たすものとして定義する。

b(±)
p |0〉 = c(±)

p |0〉 = 0, for all p ∈ R . (2.15)

2積分範囲が
∫∞

0 ,
∫ 0

−∞ となっていることが気になる人がいるかもしれないが、これは単に convensionである。
単に

∫∞
−∞ dp bpe

ipx =
(∫ 0

−∞ +
∫∞

0

)
dp bpe

ipx と分けて、c†
p := b−p とすれば (2.12)になる。bp, cp はそれぞれ粒

子、反粒子の annihlation opと一致する。
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これより、真空状態における 2点相関関数は以下のように計算される3。〈
ψ−(x, t)ψ†

−(y, t)
〉

= − 1
2πi

1
x− y

,〈
ψ†

+(x, t)ψ+(y, t)
〉

= 1
2πi

1
x− y

,

(それ以外) = 0 .

(2.16)

Proof. 積分の収束性を良くするためUV cutoff ϵを導入する。mode展開 (2.12)に e− ϵ
2 |p|の

factorを"手で"入れ以下のように修正する。

ψ−(x, t) =
∫ ∞

0

dp

2π

(
b(−)
p eip(x−t) + c(−)†

p e−ip(x−t)
)
e− ϵ

2p

ψ+(x, t) =
∫ 0

−∞

dp

2π

(
b(+)
p eip(x+t) + c(+)†

p e−ip(x+t)
)
e− ϵ

2 |p|.

(2.17)

このmode展開を用いて相関関数を実際に計算してみよう。まずは
〈
ψ−(x, t)ψ†

−(y, t)
〉
を考

える。真空の定義 (2.15)より、

〈0|ψ−(x, t) =
∫ ∞

0

dp

2π
〈0| b(−)

p e−p( ϵ2 −i(x−t)) ,

ψ†
−(y, t) |0〉 =

∫ ∞

0

dp

2π
〈0| b(−)†

p e−p( ϵ2 +i(y−t)) ,
(2.18)

となる。交換関係 (2.13)を用いて相関関数を計算すると、

〈0|ψ−(x, t)ψ†
−(y, t) |0〉 =

∫ ∞

0

dp

2π

∫ ∞

0

dq

2π
〈0| b(−)

p b(−)†
q︸ ︷︷ ︸

2πδ(p−q)−b(−)†
q b

(−)
p

|0〉 e−p( ϵ2 −i(x−t))e−q( ϵ2 +i(y−t))

=
∫ ∞

0

dp

2π
e−p(ϵ−i(x−y))

= 1
2π

[ 1
−ϵ+ i(x− y)

e−p(ϵ−i(x−y))
]p=∞

p=0

= 1
2π

1
ϵ− i(x− y)

. (2.19)

この式で ϵ → 0 とすると、
〈
ψ−(x, t)ψ†

−(y, t)
〉

= − 1
2πi

1
x−y が導かれる。また、〈

ψ+(x, t)ψ†
+(y, t)

〉
= 1

2πi
1

x−y や、それ以外の 2点関数がゼロになることも同様に示せる。

3massless free fermionは CFTなので、共形対称性の観点からも (二点関数)∼ (x − y)−1 とならなければなら
ない。
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2.2 平面 R1,1上の free compact boson

次に、平面 R1,1 上の free compact bosonを考えてみよう。実はこのモデルは先ほど議論した
massless free fermionと双対であることが知られている。このセクションでは具体的にボソン
側がフェルミオン側とどのように対応しているかを確かめる。Free compact bosonの作用は以
下で与えられる。

S = 1
8π

∫
R1,1

dtdx ∂µϕ∂
µϕ, ϕ ∈ [0, π) . (2.20)

ここで、場 ϕが 0 ∼ 2πの値を取ることに注意。この作用より、運動方程式は以下の通り。
(∂2

0 − ∂2
1)ϕ = (∂0 − ∂1)(∂0 + ∂1)ϕ = 0 . (2.21)

これより、運動方程式の解は以下のように right-moving な場 ϕ−(x − t) と left-moving な場
ϕ+(x+ t)の和で書ける。

ϕ(x, t) = ϕ+(x+ t) + ϕ−(x− t) . (2.22)

この場 ϕ±は fermionの場 ψ±と関数形が似ているため、chiral bosonと呼ぶとする。また、後
の計算の都合上、以下の関係式を満たす dual boson ϕ̃を定義しておく。

∂µϕ = ϵµν∂ν ϕ̃ ⇔ ∂0ϕ = ∂1ϕ̃, ∂1ϕ = ∂0ϕ̃ . (2.23)

(2.22)から dual bosonϕ̃は以下のように書ける。
ϕ̃(x, t) = ϕ+(x+ t)− ϕ−(x− t) . (2.24)

このことから ϕ±は ϕ, ϕ̃を用いて以下のように書ける。

ϕ± = 1
2

(
ϕ± ϕ̃

)
. (2.25)

後で述べるが、この chiral boson ϕ±がそれぞれ chiral fermion ψ±と関係付けられる。

2.2.1 対称性と保存カレント
このモデルにおいても対称性とその保存カレントを確認しておこう。作用 (2.20)には ∂ϕの項
しかないので、以下の shift対称性とその保存カレントが存在する。

shift : ϕ′ = ϕ+ α, jµB = 1
8π
∂µϕ . (2.26)

Proof. 運動方程式から ∂µj
µ
B = 1

8π∂µ∂
µϕ = 0 なので確かに保存量になっている。また、

Noetherの定理からこれが shift対称性に付随する保存カレントであることがわかる。微小
変換 δϕ = ϕ′ − ϕ = δαとしてNoetherカレントを求めると

jµB = ∂L
∂(∂µϕ)

· δϕ
δα

= 1
8π
∂µϕ , (2.27)

となる。
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また、これとは別に自明に保存するカレント j̃µB が存在する。

j̃µB = 1
8π
ϵµν∂νϕ = 1

8π
∂µϕ̃ . (2.28)

(ϵµν が反対称であることからすぐに ∂µj̃
µ
B = ϵµν∂µ∂νϕ/(8π) = 0となる) この保存カレント j̃µB

と shift対称性のカレント jµB の関係にある。
jµB = ϵµν j̃B,µ . (2.29)

この式に見覚えはないだろうか？そう、fermionの時に出てきた vector currentと axial vector
currentの関係式 (2.11)と同じ格好をしている。実際にボソン/フェルミオン双対性で jµB ↔
jµA, j̃

µ
B ↔ jµの対応があることが知られている。このことについては後で詳しく示す。

2.2.2 正準量子化
それではこのモデルでも正準量子化を行ってみよう。まずは場 ϕ(x, t)を Fourier変換しよう。

ϕ(x, t) =
∫
dp ϕ(p, t)eipx . (2.30)

これを運動方程式 (2.21) に代入すると、ϕ̈(p, t) + p2ϕ(p, t) = 0 を得る。この解は ϕ(p, t) =
ϕ1(p)eiωpt + ϕ2(p)e−iωpt, ωp = |p|。これを Fourier変換の式に戻すと、

ϕ(x, t) =
∫
dp

(
ϕ1(p)ei(px+ωpt) + ϕ2(p)ei(px−ωpt)

)
(2.31)

今実スカラー場を考えているので ϕ(x, t) = ϕ†(x, t)を満たさないといけない。よって、ϕ1(p) =
ϕ†

2(−p)を満たす。よって、

ϕ(x, t) =
∫
dp

(
ϕ†

2(p)ei(−px+ωpt) + ϕ2(p)ei(px−ωpt)
)

(2.32)

最後に、正準量子化を行うためこの係数 ϕ†
2(p), ϕ2(p)を適当な規格化定数を入れて演算子に格

上げすることにより以下のmode展開を得る4。
ϕ(x, t) =

∫ ∞

−∞

dp√
2πωp

(
ape

i(px−ωpt) + a†
pe

−i(px−ωpt)
)

π(x, t) = − i
4π

∫ ∞

−∞
dp

√
ωp
2π

(
ape

i(px−ωpt) − a†
pe

−i(px−ωpt)
)
.

(2.33)

ここで、共役運動量を π = ∂L
∂(∂0ϕ) = 1

4π ϕ̇とした。ap, a†
pはそれぞれ消滅・生成演算子である。

また、交換関係は以下の通り。{
[ϕ(x, t), π(y, t)] = iδ(x− y) ,

(それ以外) = 0,
⇐⇒


[
ap, a

†
q

]
= 2πδ(p− q) ,

(それ以外) = 0 .
(2.34)

4厳密なことを言うと、ϕの mode展開は p = 0で ambiguityがある。なので、人々はよく zero mode (p = 0
のモード)だけ分けて mode展開の式に書く。少なくともこのセクションでは zero modeが重要とならないので省
略している。
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Proof. ⇐だけ示す (⇒の証明はほとんど同じような計算である)。どんな教科書にも載って
いるようなことだけど、きちんと復習しておこう。mode展開 (2.33)より、

[ϕ(x, t), π(y, t)] = −i
2

∫
dp

2π
dq

2π

√
ωq
ωp

[
ape

i(px−ωpt) + a†
pe

−i(px−ωpt), aqe
i(qy−ωqt) − a†

qe
−i(qy−ωqt)

]

= −i
2

∫
dp

2π
dq

2π

√
ωq
ωp

− [ap, a†
q

]
︸ ︷︷ ︸
=2πδ(p−q)

ei(px−qy) +
[
a†
p, aq

]
︸ ︷︷ ︸

=−2πδ(p−q)

e−i(px−qy)


= i

2

∫
dp

2π

(
ei(px−qy) + e−i(px−qy)

)
= δ(x− y) . (2.35)

よって、(2.2.2)の⇐が示せた。

また、ϕ±のmode展開も求めておこう。それにはまず dual field ϕ̃のmode展開を求める。
∂1ϕ̃(x, t) = ϕ̇ = 4π π(x, t)より、ϕ̃(x, t)は π(x, t)を空間積分することで得られる。

ϕ̃(x, t) = 4π
∫ x

−∞
dx′π(x′, t) = −

∫ ∞

−∞

dp√
2πωp

· |p|
p

(
ape

i(px−ωpt) + a†
pe

−i(px−ωpt)
)

(2.36)

ϕと ϕ̃のmode展開 (2.33),(2.36)を (2.25)に代入すると、chiral boson ϕ±のmode展開を得る。
ϕ−(x, t) =

∫ ∞

0

dp√
2πωp

(
ape

i(px−ωpt) + a†
pe

−i(px−ωpt)
)
,

ϕ+(x, t) =
∫ 0

−∞

dp√
2πωp

(
ape

i(px−ωpt) + a†
pe

−i(px−ωpt)
)
.

(2.37)

この式と fermionのmode展開 (2.17)を見るとよく似ていることがわかり、この式からもψ+ ↔
ϕ+、ψ− ↔ ϕ−の対応がありそうだな、と予想できる。より具体的な対応は sec 2.3で述べる。

2.2.3 相関関数
先ほど得られたmode展開を用いて chiral bosonの 2点相関関数を計算してみよう。今回も真
空 |0〉を以下のように定義する。

ap |0〉 = 0, for all p ∈ R . (2.38)

また、この真空を用いて 2点相関関数を計算すると以下の結果を得る。
〈ϕ(x, t)ϕ(y, t)〉 = −2 log |x− y| ,

〈ϕ±(x, t)ϕ±(y, t)〉 = log
( ±1

i(x− y)

)
,

(それ以外) = 0 .

(2.39)
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Proof. 今回も積分の収束性を良くするため、(2.37)のmode 展開に UV cutoffを手で入れ
修正する。 

ϕ−(x, t) =
∫ ∞

0

dp√
2πωp

(
ape

i(px−ωpt) + a†
pe

−i(px−ωpt)
)
e− ϵ

2ωp ,

ϕ+(x, t) =
∫ 0

−∞

dp√
2πωp

(
ape

i(px−ωpt) + a†
pe

−i(px−ωpt)
)
e− ϵ

2ωp .

(2.40)

このmode展開を用いて 〈0|ϕ−(x, t)ϕ−(y, t) |0〉を計算すると

〈0|ϕ−(x, t)ϕ−(y, t) |0〉 =
∫ ∞

0

dp√
2πωp

∫ ∞

0

dq√
2πωq

e− ϵ
2 (ωp+ωq) 〈0| apa†

q |0〉︸ ︷︷ ︸
=2πδ(p−q)

ei(px−ωpt)e−i(qy−ωqt)

=
∫ ∞

0

dp

p
e−(ϵ−i(x−y))p .

この式に ∫∞
0 dpe−αp = 1

α の両辺を α積分することにより得られる式 ∫∞
0

dp
p e

−αp = − logα
を用いると、

〈0|ϕ−(x, t)ϕ−(y, t) |0〉 = log
( 1
ϵ− i(x− y)

)
, (2.41)

となる。最後に ϵ → 0の極限を取ると (2.39)を得る。〈0|ϕ+(x, t)ϕ+(y, t) |0〉やそれ以外も
同様に示せる。

この相関関数の関数形を見ると fermionの相関関数 (2.16)とちょうど expぐらい違うこと
が読み取れる。そこで、以下の vertex operatorを導入しよう。

:eiαϕ(x,t): =
∞∑
n=0

(iα)n

n!
:ϕ(x, t)n: . (2.42)

ここで、:(#):は normal orderingと呼ばれ、以下のように生成演算子が左に来るように演算子
の順番を入れ替える意味を持つ。

:(ap1ap2a
†
q1a

†
q2ap3 · · · ): ≡ a†

q1a
†
q2ap1ap2ap3 · · · . (2.43)

この vertex operatorの相関関数を計算すると以下の結果を得る。〈
:eiϕ±(x,t): :e−iϕ±(y,t):

〉
=
〈
:eiϕ±(x,t)−iϕ±(y,t):

〉
e〈ϕ±(x,t)ϕ±(y,t)〉

= ±1
i(x− y)

. (2.44)

計算では Baker-Hausdorfの公式を用いた。
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Proof. 場 ϕ±(x, t), ϕ±(y, t)の代わりに以下の演算子 A, Bを考えよう。証明の本質は変わ
らない。

A = αa+ βa†, B = γa+ δa† . (2.45)

ここで、ギリシャ文字 α, β, γ, δはただの数、a†, aは生成・消滅演算子である。Normal
orderingの性質より、vertex opertorの積は以下のように変形できる。

:eA: :eB:= eβa
†
eαaeδa

†
eγa (2.46)

ここで、[A,B]がただの数の時の Baker-Hausdorfの公式 eAeB = eBeAe[A,B]を用いると、

:eA: :eB: = eβa
†
eδa

†
eαa e[αa,δa†]︸ ︷︷ ︸

=eαδ
eγa

= eβa
†
eδa

†
eαaeγaeαδ

= :eA+B: e〈AB〉 . (2.47)

最後の変形では 〈AB〉 = 〈αaδa†〉 = αδを用いた。同様の式が多変数の場合にも成り立つの
で、A→ iϕ±(x, t), B → −iϕ±(y, t)と拡張すれば (2.44)が成り立つ。

2.3 ボソン/フェルミオン双対性の辞書
このセクションでは前節の答えを参照しながらボソン/フェルミオン双対性の辞書を導入する。
セクション 2.1と 2.2の解析結果を見ると、たびたび bosonと fermionの対応関係をほのめかす
結果があったと思う。類似している点を列挙すると、

• fermionの保存カレントの関係式 jµA = ϵµνjν と boson側の関係式 jµB = ϵµν j̃B,µ

• chiral fermion ψ±のmode展開 (2.12)と chiral boson ϕ±のmode展開 (2.37)

• fermionの相関関数 (2.16)と bosonの vertex operatorの相関関数 (2.44)

このことから、chiral fermion ψ±と chiral boson ϕ±は対応していることが予想できる。fermion
の相関関数 (2.16)と bosonの vertex operatorの相関関数 (2.44)の類似性から定数倍も含めて
比較すると、以下の対応関係が読み取れる。

ψ−(x, t)⇐⇒ 1√
2π

:eiϕ−(x,t): ,

ψ+(x, t)⇐⇒ 1√
2π

:e−iϕ+(x,t): .
(2.48)

また、この演算子対応関係から、fermionのUA(1)対称性ψ′ = e−iγ5αψ ⇔ ψ′
+ = e−iαψ+, ψ

′
− =

eiαψ−は bosonでは shift対称性 ϕ′ = ϕ+αと対応していることがわかる。さらに、fermionと
bosonで保存カレントの対応 jµB ⇔ jµA, j̃

µ
B ⇔ jµの対応も見ることができる。実際に計算して
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みよう。対応関係 (2.48)を用いると、

ψ†
±(x, t)ψ±(x, t)⇐⇒ 1

2π
lim
y→x

:e±iϕ±(x,t): :e∓iϕ±(y,t):

= 1
2π

lim
y→x

:e±i(ϕ±(x,t)−ϕ±(y,t)): e〈ϕ±(x,t)ϕ±(y,t)〉

= 1
2π

lim
y→x

:
(
1± i∂1ϕ±(x, t) · (x− y) +O((x− y)2)

)
: ±1

i(x− y)

= 1
2π

(
± lim
y→x

1
i(x− y)

+ ∂1ϕ±(x, t)
)
. (2.49)

となる。UA(1)カレント jµAを成分ごとに書くと、

j0
A = ψ†

+ψ+ − ψ†
−ψ− ,

j1
A = −ψ†

+ψ+ − ψ†
−ψ− .

(2.50)

これに (2.49)の対応関係を用いて計算すると、

j0
A(x, t) = lim

y→x

(
ψ†

+(x, t)ψ+(y, t)− ψ†
−(y, t)ψ−(x, t)

)
, (2.51)

⇐⇒ 1
2π

∂1ϕ̃︸︷︷︸
=∂0ϕ

= 4j0
B ,

j1
A(x, t) = − lim

y→x

(
ψ†

+(x, t)ψ+(y, t) + ψ†
−(x, t)ψ−(y, t)

)
, (2.52)

⇐⇒ − 1
2π
∂1ϕ = 4j1

B ,

となる5。よって保存カレントに関して以下の対応があることがわかった。

jµA ⇐⇒ 4jµB . (2.53)

次に、U(1)カレント jµの対応関係もみてみよう。成分ごとに書き下すと、

j0
A = ψ†

+ψ+ + ψ†
−ψ− ,

j1
A = −ψ†

+ψ+ + ψ†
−ψ− .

(2.54)

5鋭い人は気づいたかもしれない。この計算で j0
A(x, t)として (2.51)の極限を採用し、j1

A(x, t)を (2.52)の極限とし
て計算した。実はこの極限の取り方に微妙さがある。例えば j0

A(x, t) = limy→x

(
ψ†

+(x, t)ψ+(y, t) − ψ†
−(x, t)ψ−(y, t)

)
として計算すると limy→x

1
i(x−y) のような虚数の UV発散項が出てくる。カレントは実数なのでこれはおかしい気

がする。今回は jµA として自然な (実数になるような)極限の取り方を採用した。正直この辺りは微妙なところです。
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先ほどと同様に (2.49)の対応関係を用いて計算すると以下の対応を得る。

j0(x, t) = lim
y→x

(
ψ†

+(x, t)ψ+(y, t) + ψ†
−(x, t)ψ−(y, t)

)
, (2.55)

⇐⇒ 1
2π

∂1ϕ︸︷︷︸
=∂0ϕ̃

= 4j̃0
B ,

j1(x, t) = lim
y→x

(
−ψ†

+(x, t)ψ+(y, t) + ψ†
−(y, t)ψ−(x, t)

)
, (2.56)

⇐⇒ − 1
2π
∂1ϕ̃ = 4j̃1

B .

よって、以下の対応関係があることが確かめられた。

jµ ⇐⇒ 4j̃µB . (2.57)

このように、演算子対応 (2.48)から保存カレントの対応を確認することができた。このように、
自由場の理論を用いて fermionと bosonの対応関係を見ることができた。これらの結果を踏ま
えてボソンの辞書をまとめよう。

ボソン/フェルミオンの辞書 (演算子の対応)：

iψ/∂ψ ⇐⇒ 1
8π

(∂ϕ)2 ,

ψ±(x, t)⇐⇒ 1√
2π

:e∓iϕ±(x,t): ,

jµA ⇐⇒ 4jµB ,

jµ ⇐⇒ 4j̃µB ,

(2.58)

ここで、ψ±は chiral fermion、ϕ±は chiral bosonであり、fermionと bosonのカレントはそれ
ぞれ jµA = ψγµγ5ψ, jµ = ψγµψ, jµB = 1

8π∂
µϕ, j̃µB = 1

8π ϵ
µν∂νϕで与えられる。

このボソン/フェルミオン双対性は場の量子論を調べる上で非常に強力な双対性であり、自
由場以外の理論に対しても用いることができると信じられている6。この修士論文でもこのボソ
ン/フェルミオン双対性を何度も使用する。

3 非自明なサイクルを持つ多様体上のボソン/フェルミオン双対性

このセクションでは時空に非自明なサイクルを持つような場合にボソン/フェルミオン双対性が
どのようになるかを議論する。前のセクションでは 2次元時空におけるボソン/フェルミオン双
対性の辞書 (演算子対応)を説明した。辞書の中に出てくる演算子の対応は localな対応 (空間

6厳密な証明はないけど、色んなモデルで確かめて反例が出ない。だから信じましょうみたいなノリだと思いま
す。
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の各点での対応)であるため非自明なサイクルの有無のような globalな構造には依らない。し
かし、分配関数を考えると明らかな違いがある。例えば fermionの場合、分配関数はトーラス
の spin structure(=fermion場の境界条件)に依存する。しかし、bosonの場合分配関数に spin
structureは出てこない。このセクションではこのような問題解決するためにより一般的なボソ
ン/フェルミオン双対性の辞書を説明する。
構成は以下の通り。まずセクション 3.2 では簡単な例であるトーラス上の free massless

fermionについて勉強する。次にセクション 3.3ではトーラス上の free compact bosonについ
て議論し、fermion側との対応関係を考察する。そしてセクション 3.5で時空に非自明なサイク
ルがある場合のボソン/フェルミオン双対性の辞書を述べる。最後のセクション 3.6ではその応
用としてmassless Thirring modelの分配関数を導出する。

3.1 2次元CFTの予備知識
このセクションでは必要最低限の 2次元 CFTの知識を整理しておく。これから紹介する CFT
の性質はちゃんと導出しようとすると書かないといけないことが多くなってしまうので結果だ
けの紹介に留めるとする。より詳しい説明は教科書 (Yellow book[22]、Ginspargの lecture[23]、
疋田さんの本 [24]など)を参照すると良い。なお、このセクションでは時空は Euclid化されて
いるものとする。

3.1.1 共形変換 (2次元)

今、2次元 Euclid時空考え、座標を (x0, x1)とする (ηµν = diag(1, 1))。また、以下の複素座標
z, zを導入する。 {

z = x0 + ix1

z = x− ix1 . (3.1)

共形変換とは計量が gµν → g′
µν = Λ(x)gµν と変換するような座標系の変換のことであり、2次

元の場合は任意の正則関数 f(z)を用いた変換が許される7。{
z → z′ = f(z)
z → z′ = f(z)

. (3.2)

check:

ds2 = η′
µνdx

′µdx′ν = dz′dz′ = f ′(z)f ′(z) dzdz =
(
f ′(z)f ′(z)

)
ηµνdx

µdxν .

確かに g′
µν = Λ(x)gµν の形になっている。

また、微小変換の場合は、
z′ = z + ϵ(z) = z +

∑
n∈Z

ϵnz
n+1

z′ = z + ϵ(z) = z +
∑
n∈Z

ϵnz
n+1

. (3.3)

7由緒正しく導出したい人は共形 killing方程式を解こう
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となる。ここで、ϵ(z), ϵ(z)はそれぞれ微小な大きさを持つ正則関数、反正則関数でありLaurent
展開を行った。それぞれの微小変換 ϵn, ϵnに対応する生成子をLn, Lnとする。これらはVirasoro
生成子と呼ばれ、動径量子化を行うと以下のVirasoro代数を満たす。

[Ln, Lm] = (n−m)Ln+m + c

12
n(n2 − 1)δn+m,0

[Ln, Lm] = (n−m)Ln+m + c

12
n(n2 − 1)δn+m,0

. (3.4)

ここで、cは central chargeと呼ばれる定数であり、理論を特徴付ける量である。また、この変
換全体の生成子がQ =

∑
n∈Z ϵnLnと書けることからエネルギー運動量テンソル T (z)は

T (z) =
∑
n∈Z

Ln
zn+2 , (3.5)

と書ける8。また、(3.3)からL0, L0 動径量子化では動径方向を時間のように扱うので、ハミル
トニアンH(動径方向の生成子↔dilatation)と運動量 P (角度方向の生成子↔rotation)は以下
のように書ける。

H = L0 + L0

P = L0 − L0
. (3.6)

(3.6)についての補足:
スカラー場 ϕ(z)を例にとるとわかりやすいだろう。スカラー場の時、微小変換 (3.3)で場の
変換は

ϕ(z′) = ϕ

z +
∑
n∈Z

ϵnz
n+1

 = ϕ(z) +
∑
n∈Z

ϵnz
n+1∂zϕ(z) .

よって、Lnの具体形は

Ln = zn+1∂z ,

とわかった (これはスカラー場の場合に成り立つ)。Lnについても同様である。これを用い
てH, P を変形し、killing vectorを読み取ってみよう。z = x0 + ix1より、

H = L0 + L0 = z∂z + z∂z = x0∂0 + x1∂1 , (3.7)

となることわかるので、ここから killing vectorを読み取ると確かに dilatationになってい
ることが確かめられる。

{
ξ0 = x0

ξ1 = x1 ⇒ dilatation
x0

x1
ξµ

8このエネルギー運動量テンソル T (z) は T = −2πTz,z で定義されており、動径量子化の議論で Q =
1

2πi

∮
dzϵ(z)T (z)と書けることを用いると (3.5)が自然に出てくる。
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また、運動量 P の方も同様に計算てみよう。

P = L0 − L0 = z∂z − z∂z = i
(
x1∂0 − x0∂1

)
, (3.8)

よって、ここから killing vectorを読み取ると確かに回転になっていることがわかる。

{
ξ0 = x1

ξ1 = −x0 ⇒ rotation
x0

x1
ξµ

3.1.2 場の変換性
ここでは CFTにおいて非常に重要な場の変換性について述べる。共形ウエイト (h, h)を持つ
Primary場O(z, z)は共形変換で以下のように変換するものとして定義される。

O(z′, z′) =
(
dz

dz′

)h ( dz
dz′

)h
O(z, z) . (3.9)

また、エネルギー運動量テンソルについては厳密には primary場ではないことから共形変換に
余計なお釣りがついてくることが知られている。

T ′(z′) =
(
dz

dz′

)2 (
T (z)− c

12
{z′; z}

)
, (3.10)

ここで、{f(z); z}はシュワルツ微分と呼ばれ以下で定義される。

{f(z); z} := f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2
. (3.11)

3.1.3 トーラスの分配関数
時空がトーラスの場合を考えてみよう。トーラスとは図 1のように周期性のある 2次元空間で
あり、moduli τ ∈ Cで特徴付けられる。トーラスの複素座標を ωとする (Re ω :空間 (角度)方
向、Im ω :時間 (動径)方向)。分配関数はZ = 〈0| eiXµPµ |0〉で書けることを思い出そう (Xµは
考えている時空の端から端までの座標)9。τ = τ1 + iτ2とすると、トーラスを一周する際に時間
(動径)方向に 2πiτ2、空間 (角度)方向に 2πτ1だけ進むので、分配関数 Z(τ)は以下のように書
ける。

Z(τ) = 〈0| e−2πτ2H+2πiτ1P |0〉 = Tr
[
e−2πτ2H+2πiτ1P

]
. (3.12)

9有限温度系ではよく Z = 〈0| e−βH |0〉という式が出てくるが、これはこの式の特別な場合。虚時間方向のみに
注目すると、X0 = iβ より、Z = 〈0| e−βH |0〉となる。ここで、H は時間方向の生成子 (ハミルトニアン)
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Re ω

Im ω ω

O

2πτ 2π(τ+1)

2π

� �

>

>

⇐⇒

Torus

γ1

γ0

図 1. トーラスの座標 (左図)と模式図 (右図)。左図ではトーラス上の複素座標を ω とし、空間は両端
で周期的になっている。τ はトーラスの moduliと呼ばれ、トーラスの 2つの cycle(オレンジと黄緑の
cycle)の長さ比とトーラスの捩れ具合を表す。

ここで、H, P はそれぞれトーラス上のハミルトニアン (動径方向の生成子)、運動量 (角度方向
の生成子)である。H, P は L0, L0を用いてH = L0 + L0 − c/12, P = L0 − L0を書けること
を用いると、

Z(τ) = Tr
[
exp

(
−2πτ2

(
L0 + L0 −

c

12

)
+ 2πiτ1

(
L0 − L0

))]
= Tr

[
exp

(
2πiτ

(
L0 −

c

24

))
exp

(
−2πiτ

(
L0 −

c

24

))]
. (3.13)

よって、以下の結果を得る。

Z(τ) = Tr
(
qL0− c

24 qL0− c
24
)
,

τ :トーラスのmoduli, q = e2πiτ , q = e−2πiτ
(3.14)

H = L0 + L0 − c/12, P = L0 − L0の補足:
(3.6)ではH = L0 + L0, P = L0 − L0としていたが、今回は余計な constant −c/12が入
る。これについて説明しよう。
トーラスを作るためにはまず 2次元平面をシリンダーにmapし、シリンダーの両端を同一
視すれば良い (下の図を参照)：

x0

x1

r
φ

z

ω = φ− ir
z = eiω

r

φ

ω
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この Planeから Cylinderにmapする共形変換は以下で与えられる。

z → ω = φ− ir = 1
i

log z . (3.15)

(3.14)を導出する際に用いるハミルトニアンH、運動量 P は cylinder上で定義されている
ものであると考えるべきなので、厳密に書くと、

H = Lcyl
0 + L

cyl
0

P = L
cyl
0 − L

cyl
0 ,

(3.16)

である。この共形変換 (3.15)を用いると、
(
dz
dω

)2
= −z2, {ω, z} = 1

2z2 が得られるので、エ
ネルギー運動量テンソルの変換式 (3.10)に代入すると、

T cyl(ω) = −z2T (z) + c

24

= −
∑
n∈Z

Ln
zn

+ c

24
, (3.17)

を得る。最後の式変形では T (z)の級数展開 (3.5)を用いた。この式の zのゼロ次に注目す
ると cylinder上の Lcyl

0 (Lcyl
0 )を読み取ることができる。

Lcyl
0 = L0 −

c

24
L

cyl
0 = L0 −

c

24
.

(3.18)

これを (3.16)に代入すれば、H = L0 + L0, P = L0 − L0を得る。

3.2 トーラス上のmassless free fermion

このセクションでは非自明なサイクルのある時空上のモデルの例として、トーラス上のmassless
free fermionを考えてみよう。トーラスは二次元平面から共形変換で作ることができる。2次元
平面上のmassless free fermionの作用は以下で与えられる。

S =
∫
R2
d2x Ψγµ∂µΨ , (3.19)

ここでΨはMajorana fermionである。また、ガンマ行列の具体形として以下のものを用いる
とする10。

γ0 = σx, γ1 = σy, γ5 = iγ0γ1 = σz, (3.20)

10Minkowski時空 (ηµν = diag(1,−1))の時 γ1 = iσy としていたが、Euclideanでは計量を ηµν = diag(1, 1)に
するため今回は γ1 = σy と変更している。
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例によって 2次元平面上の複素座標 z = x0 + ix1, z = x0 − ix1を用いると便利である。作用の
ガンマ行列の部分を計算すると、

γ0γµ∂µ =

 ∂0 − i∂1 0
0 ∂0 + i∂1

 =

 ∂ 0
0 ∂

 (3.21)

となる (∂ = ∂z, ∂ = ∂z)。fermion場のスピノルの成分をΨ = (ψ, ψ)Tと置くと以下の作用が
得られる。

S = 2
∫
C
d2z

(
ψ∂ψ + ψ∂ψ

)
, (3.22)

この作用から変分を取ると以下の運動方程式を得る。{
∂ψ = 0 ,
∂ψ = 0 .

⇒
{
ψ = ψ(z) ,
ψ = ψ(z) .

(3.23)

よって、ψ(z), ψ(z)がそれぞれ正則関数、反正則関数であることがわかった。

3.2.1 正準量子化
それではこのモデルの量子化を行おう。簡単のため正則な部分 ψ(z)に注目する (反正則な部分
ψ(z)に対しても同様の議論が成り立つ)。ψ(z)を以下のように Laurant展開しよう。

iψ(z) =
∑
n

ψnz
−n−1/2 , (3.24)

ここで、∑nに出てくる変数 nは今は整数か半整数のどちらかであり、後で決定するとする。ま
た、係数 ψn, ψ̃nは演算子に格上げされているとし、動径量子化を行うと以下の反交換関係を
満たす。

{ψn, ψm} = δn+m,0 ,

(それ以外) = 0 .
(3.25)

ここで、ψn<0, ψn>0はそれぞれ生成・消滅演算子である。
さて、ここで考えている 2次元平面をシリンダーにマップすることを考えよう。共形変換

は z = eiω で与えられる。シリンダー上の fermion場を ψcyl(ω)とすると、

ψcyl(ω) =
(
dz

dω

)1/2
ψ(z) ,

= i−1/2∑
n

ψne
−inω . (3.26)

となる。ここで fermion場の共形ウエイトが (h, h) = (1/2, 0)であることと、ψ(z)のモード展
開 (3.24)を用いた。後で重要となるため、シリンダー上の fermion場の周期性について考えよ
う。fermion場には以下の二つの境界条件がある。{

ψcyl(ω + 2π) = −ψcyl(ω) : Anti-periodic (A) ,
ψcyl(ω + 2π) = +ψcyl(ω) : Periodic (P) .

(3.27)
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シリンダー上のモード展開の式 (3.26)からこの二つの境界条件は以下のように対応することが
わかる。  A : n ∈ Z + 1

2
,

P : n ∈ Z .
(3.28)

最後に、後でトーラス上の分配関数を求めるために必要となるL0を求めておこう。この系
のエネルギー運動量テンソルを求めると以下のようになる。

T (z) = 1
2

:ψ(z)∂ψ(z): , (3.29)

ここで、同じ点における演算子の積の順番を明確にするため normal orderingを用いた。この
式にモード展開 (3.24)を代入し、z−2に比例する項から L0として以下の結果を得る11。

L0 = 1
2
∑
n

(−n+ 1/2) :ψnψ−n: =



∑
n∈Z+ 1

2

nψ−nψn : A

∑
n∈Z

nψ−nψn + 1
16

: P
(3.30)

3.2.2 トーラス分配関数
さて、次にトーラス上の massless free fermionの分配関数を求めることを考えよう。トーラ
ス上で fermionを考える場合 spin structureに注意をしなければならない。トーラス上の spin
structureを ϱとすると、以下の 4通りの spin structureがある。

ϱ = AA : ψ(ω + 2πτ) = −ψ(ω), ψ(ω + 2π) = −ψ(ω) ,
ϱ = AP : ψ(ω + 2πτ) = −ψ(ω), ψ(ω + 2π) = +ψ(ω) ,
ϱ = PA : ψ(ω + 2πτ) = +ψ(ω), ψ(ω + 2π) = −ψ(ω) ,
ϱ = PP : ψ(ω + 2πτ) = +ψ(ω), ψ(ω + 2π) = +ψ(ω) ,

(3.31)

ここでψ(ω)はトーラス上の場である。fermionの場合、fermi統計から非自明なサイクルに沿っ
て反周期性があるのが自然である (有限温度の fermionを扱う時、虚時間方向に反周期性を課
すのと同じ)。ϱ = AA以外の spin structureはトーラス上に非局所的な fermion parity演算子
(−1)F が挿入されていると解釈することができる。図 2に spin structureと fermion parity演
算子 (−1)F の空間的配置をまとめた。

11導出の際に注意すべきことは、:ψnψ−n:が以下のように評価できることである。
n > 0 の時 : :ψnψ−n: = ψnψ−n − 〈ψn ψ−n︸︷︷︸

生成

〉 = ψnψ−n − 1 = −ψ−nψn ,

n < 0 の時 : :ψnψ−n: = ψnψ−n − 〈ψn ψ−n︸︷︷︸
消滅

〉 = ψnψ−n .

また、エネルギー運動量テンソルの期待値を計算すると 〈T (z)〉 = 0 (A), 1/16 (P)となるので Periodicな場合に
L0 に定数項 1/16を足した。詳しくは Polchinskiの教科書 [25]の 6.4章を参照せよ。
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ϱ = PP

図 2. spin structure ϱと非局所的な fermion parity 演算子 (−1)F の対応関係。

この解釈より、それぞれの spin structureに対応する分配関数は以下のようにかける。

ZF[AA] = TrA
[
qL0− 1

48 qL0− 1
48
]

= |dAA|2 ,

ZF[AP] = 1
2

TrP
[
qL0− 1

48 qL0− 1
48
]

= |dAP|2 ,

ZF[PA] = TrA
[
(−1)F qL0− 1

48 qL0− 1
48
]

= |dPA|2 ,

ZF[PP] = 1
2

TrP
[
(−1)F qL0− 1

48 qL0− 1
48
]

= |dPP|2 ,

(3.32)

ここで、トーラス上の分配関数の一般式 (3.14)とMajorana fermionの中心電荷の値 c = 1/2を
用いた。1

2 のファクターがある場合があるがこれは単にコンベンションである。また、今後の
ためトレースの構成要素 dAA, dAP, dPA, dPPを以下のように定義した。

dAA := TrA
[
qL0− 1

48
]
, dAP := 1√

2
TrP

[
qL0− 1

48
]
,

dPA := TrA
[
(−1)F qL0− 1

48
]
, dPP := 1√

2
TrP

[
(−1)F qL0− 1

48
]
,

(3.33)

あとはこれらの値をそれぞれ計算すれば良い。
• dAAの計算:
L0は (3.30)で与えられている。よって、計算すべき量は

dAA = TrA

[
q

∑
n∈Z+ 1

2
nψ−nψn− 1

48
]
, (3.34)

である。n番目の項 qnψ−nψn に注目し、基底 |0〉n , |1〉n := ψn |0〉nを用いて行列表示して
みよう。

qnψ−nψn =

 1 0
0 qn

 . (3.35)
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q
∑

n>0 nψ−nψnは行列表示するとこれらの行列のクロネッカー積で表せる12。クロネッカー
積のトレースの性質 Tr(A⊗B) = (TrA)(TrB)より、以下のように計算できる。

dAA = q− 1
48 TrA

⊗
n

 1 0
0 qn

 ,

= q− 1
48
∏
n∈Z

(
1 + qn+1/2

)
,

=
√
ϑ3(τ)
η(τ)

. (3.37)

最後の計算では theta関数と eta関数を用いた (付録 B)。
• dAPの計算:
この場合も dAA と同様に計算できる。ただし Periodicの nの値 (3.30)を用いることに
注意。

dAP = 1√
2
q

1
24 TrP

⊗
n

 1 0
0 qn

 ,

= 1√
2
q

1
24
∏
n∈Z

(1 + qn) ,

=
√
ϑ2(τ)
η(τ)

. (3.38)

• dPAの計算:
この場合は (−1)F が 1粒子状態に対して作用することに注意。Anti-periodicの nの値
(3.30)を用いると、以下のように計算できる。

dPA = q− 1
48 TrA

(−1)F
⊗
n

 1 0
0 qn

 ,

= q− 1
48
∏
n∈Z

(
1− qn+1/2

)
,

=
√
ϑ4(τ)
η(τ)

. (3.39)

12行列 A,B のクロネッカー積の定義は以下の通り。

A⊗B =


a11B · · · a1nB

...
. . .

...
an1B · · · annB

 . (3.36)

この定義から TrA⊗B = a11 TrB + · · · ann TrB = (TrA)(TrB)が成り立つことがわかる。
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• dPPの計算:
この場合は Periodicの nの値 (3.30)かつ (−1)F がある場合である。

dPP = 1√
2
q

1
24 TrP

(−1)F
⊗
n

 1 0
0 qn

 ,

= 1√
2
q

1
24
∏
n∈Z

(1− qn) ,

= 0
(

=
√
ϑ1(τ)
η(τ)

)
. (3.40)

よって、以上の計算結果 (3.37)-(3.40)よりMajorana fermionの分配関数とてして以下の結果
を得る。

トーラス上の free massless Majorana fermionの分配関数

ZF[AA] =
∣∣∣∣ϑ3(τ)
η(τ)

∣∣∣∣ , ZF[AP] =
∣∣∣∣ϑ2(τ)
η(τ)

∣∣∣∣ ,
ZF[PA] =

∣∣∣∣ϑ4(τ)
η(τ)

∣∣∣∣ , ZF[PP] = 0
(

=
∣∣∣∣ϑ1(τ)
η(τ)

∣∣∣∣) ,

(3.41)

この表式ではトーラスのmodular S 変換 τ → − 1
τ の変換性が明確である (付録の公式 (B.7)

参照)。
modular S 変換の変換性:

ZF[AA]→ ZF[AA] , ZF[AP]→ ZF[PA],
ZF[PA]→ ZF[AP] , ZF[PP]→ ZF[PP],

(3.42)

modular S 変換はトーラスの二つの非自明なサイクルを入れ替えに対応しているので、この結
果は図 2の解釈から納得できる。ϱ = AA, PPはトーラスの二つの非自明なサイクル入れ替え
に対して不変であるが、ϱ = AP, PAの場合は非局所演算子 (−1)F の位置関係が入れ替わる。

3.3 トーラス上の compact boson

それではもう一つの例であるトーラス上の compact bosonを扱ってみよう13。作用は以下で与
えられる。

ZB[R, τ ] :=
∫
Dϕ exp

[
−R

2

8π

∫
R2

d2x ∂µϕ∂µϕ

]
,

=
∫
DX exp

[
− 1

8π

∫
R2

d2x ∂µX∂µX

]
,

=
∫
DX exp

[
− 1

2π

∫
C

d2z ∂X∂X

]
. (3.43)

13compact bosonに関しては Polchinskiの教科書 [25]の 8.2章を参考にした。
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ここで、場をX(z, z) := Rϕ(z, z)として再定義した14。また、最後の表式では 2次元平面上の
複素座標 z = x0 + ix1を用い、∂ = ∂z, ∂ = ∂z と略記した。トーラス上の複素座標 ω = φ− ir
とは共形変換 z = eiω で関係している。また、場X はその値に以下の周期性があるとする。

X(z, z) ∼ X(z, z) + 2πR . (3.44)

後でわかることだが、この条件により運動量が量子化される。また、もう一つの重要な周期性
は以下の通り。

X(φ+ 2π) = X(φ) + 2πRw , w ∈ Z . (3.45)

ここで、wはトーラス上の一つの非自明なサイクルを一周したときに compact bosonが何回巻
き付いているかを表す整数であり、winding numberと呼ばれている。

3.3.1 正準量子化
それでは compact bosonに正準量子化を行おう。まず運動方程式は作用 (3.43)より、

∂∂X = ∂∂X = 0 . (3.46)

よって、この解は ∂X =(zの関数)、∂X =(zの関数)となるため、以下のように Laurant展開
できる。

∂X = −i
∞∑

m=−∞

αm
zm+1 , ∂X = −i

∞∑
m=−∞

α̃m
zm+1 . (3.47)

ここで、係数 αm, α̃mは演算子に格上げされているとする。動径量子化より以下の交換関係を
満たす。

[αm, αn] = [α̃m, α̃n] = mδm+n,0 ,

(それ以外) = 0 .
(3.48)

このモード展開を用いると、winding numberは以下のように書ける。

2πRw =
∮

(dz ∂X + dz ∂X) = 2π(α0 − α̃0) . (3.49)

ここで、∮ は z平面上の原点を囲む周回積分を表しており、最後に式では ∮
dzzn = 2πiδn,−1を

用いた。また、運動量 pはネーター電荷として、以下で与えられる。

p = 1
4π

∮
(dz ∂X − dz ∂X) = 1

2
(α0 + α̃0) . (3.50)

ここで、winding numberが整数であることと、運動量の量子化 p = n
R , n ∈ Zを組み合わせる

と、α0, α̃0(の固有値)に対して以下の式が得られる。

pL := α0 = n

R
+ wR

2
,

pR := α̃0 = n

R
− wR

2
,

(3.51)

14これは単に気分の問題です。場 X の方が標準的だと思うのでこうしました。
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次に、分配関数を求めるため Virasoro生成子の L0, L0を求めよう。この系のエネルギー運動
量テンソル T (z)は以下の通り15。

T (z) = −1
2

:∂X∂X: ,

= 1
2
z−m−m′−2 :αmαm′ : . (3.52)

T (z)についても同様である。エネルギー運動量テンソルの級数展開 (3.5)より、L0は z−2の項
を見れば読み取れる。上の式で z−2に比例する部分に注目すると以下の式を得る。

L0 = 1
2
p2
L +

∞∑
m=1

α−mαm ,

L0 = 1
2
p2
R +

∞∑
m=1

α̃−mα̃m ,

(3.53)

ここで、αn, α̃nは n > 0の時に消滅演算子で、n < 0の時は生成演算子であることを用いた。
今や L0, L0の表式が得られたので、トーラスの分配関数の公式 (3.14)を用いることによ

り free compact bosonの分配関数は以下のように計算できる。
ZB[R, τ ] = Tr

[
qL0qL0

]
= 〈0| qL0qL0 |0〉 ,

= 1
|η(τ)|2

∑
n,w∈Z

q
1
2p

2
Lq

1
2p

2
R ,

= 1
|η(τ)|2

∑
n,w∈Z

q
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

. (3.54)

ここで、1行目から 2行目に行く時には normal orderingの作用により (3.51)の第 2項がトレー
スに寄与しないことを用いた。また、分配関数のmodular S 不変性を担保するために |η(τ)|2の
ファクターを用いて規格化した。
さらに、トーラスのmodular τ が純虚数の場合はこの分配関数は theta関数を用いてシン

プルに書くことができる (theta関数と eta関数に関しては付録 Bを参照せよ)。τ = iℓと置き
多少の計算をすると以下の結果を得る。

ZB[R, iℓ] = 1
η(i ℓ)2 ϑ3

(
i 2 ℓ
R2

)
ϑ3

(
i R

2 ℓ

2

)
. (3.55)

よって、free compact bosonの分配関数を求めることができた。

3.3.2 ZB ゲージ場がある場合
さて、今度はトーラス上の free compact bosonに ZB

2 ゲージ場が入った場合を考えよう。今回
は以下の ZB

2 対称性を扱ってみよう。
ZB

2 : X(z, z)→ X(z, z) + πR . (3.56)
15ここで、T (z)の定義に normal orderingが入っているが、これは同じ点 zにおける演算子積 ∂X(z, z)∂X(z, z)

の曖昧さを取り除くために必要である。
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図 3. ZB
2 ゲージ場の挿入と非局所演算子 η̂ 演算子の対応関係。ここで、(T0, T1) は ZB

2 ゲージ場の
holonomyを表す。

この ZB
2 対称性に対する離散ゲージ場 T ∈ H1

(
T,ZB

2

)
を考える。離散ゲージ場 T の holonomy

を T0, T1とする;

T0 =
∮
γ0
T , T1 =

∮
γ1
T , T0, T1 ∈ {0, 1} . (3.57)

ここで、γ0, γ1は図 1の左のようにトーラス上の二つのサイクルである。また、T は Z2ゲージ
場より、holonomyは 0か 1の値しか取らない。よって、トーラスの場合は ZB

2 ゲージ場の配位
として以下の 4通りがある。

(T0, T1) = (0, 0), (0, 1), (1, 0), (1, 1) . (3.58)

ZB
2 ゲージ場の holonomyがゼロでない場合、場X はその方向に (3.56)の変換を受ける。例え
ば (T0, T1) = (0, 1)の場合は以下の境界条件を満たす。

X(φ+ 2π) = X(φ) + πR . (3.59)

このように ZB
2 ゲージ場の存在は場の境界条件に作用するが、これは以下の作用をする非局所

的な演算子 η̂がトーラス上に挿入されていると考えることもできる。

η̂X(φ, r) = X(φ, r) + πR . (3.60)

先ほどの例 (T0, T1) = (0, 1)の場合、演算子 η̂はトーラスの φ一定面に存在しているとみなす
ことができる (図 3の左から二つ目を参照)。それ以外の ZB

2 ゲージ場の配位についても同様の
解釈ができる。図 3にそれぞれのZB

2 ゲージ場の配位と非局所演算子 η̂の位置関係をまとめた。
まずは ZB

2 ゲージ場がある場合の分配関数を求める準備をしよう。(T0, T1) = (0, 0)の場合
は ZB

2 ゲージ場がない場合と同じなので分配関数は先ほど求めた値と一緒である。しかし、ノ
ンゼロの ZB

2 ゲージ場がある場合は非局所演算子 η̂の存在を考慮に入れないといけない。そこ
で、セクション 3.3.1で行った解析をもう少し詳しく考えてみよう。まずは ∂X, ∂X に関する
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モード展開を積分しよう。(3.47)より、以下の結果を得る。

XL(z) = xL − ipL log z + i
∞∑

m=−∞
m6=0

αm
mzm

,

XR(z) = xR − ipR log z + i
∞∑

m=−∞
m 6=0

α̃m
mzm

.

(3.61)

ここで、場X(z, z)を正則な項と反正則は項に分けた。
X(z, z) = XL(z) +XR(z) . (3.62)

また演算子 xL,R, pL,R, αm, α̃mは以下の交換関係を満たす。
[xL, pL] = [xL, pL] = i

[αm, αn] = [α̃m, α̃n] = mδm+n,0 ,

(それ以外) = 0 .
(3.63)

先ほどの議論ではwinding numberとmomoentum numberの議論で pL, pRの固有値を (3.51)
と求めたが、固有状態を具体的に書いておこう。Vertex operatorとそれに対応する真空のゼロ
モード状態 |0;n,w〉を以下のように定義する。

Vn,w(z, z) := :exp
[
i
(
n

R
+ wR

2

)
XL(z) + i

(
n

R
− wR

2

)
XR(z)

]
: , (3.64)

|0;n,w〉 := lim
z,z→0

Vn,w(z, z) |0〉

= exp
[
i
(
n

R
+ wR

2

)
xL + i

(
n

R
− wR

2

)
xR

]
|0〉 . (3.65)

最後の等式では normal orderingの定義と真空の定義 pL,R |0〉 = αn>0 |0〉 = α̃n>0 |0〉 = 0を用
いた。この状態 |0;n,w〉は pL,Rの固有値 n

R + wR
2 , n

R −
wR
2 の固有状態となっている。

pL |0;n,w〉 =
(
n

R
+ wR

2

)
|0;n,w〉 ,

pR |0;n,w〉 =
(
n

R
− wR

2

)
|0;n,w〉 ,

(3.66)

(3.66)の証明:
交換関係 [xL, pL] = [xL, pL] = iより、

[
pL,R, x

n
L,R

]
= −inxn−1

L,R が成り立つので以下の交換
関係を満たす。 [

pL,R, e
iαxL,R

]
=
∑
n

(iα)n

n!

[
pL,R, x

n
L,R

]
= αeiαxL,R . (3.67)

ここで、αはただの数。これを用いて pLe
αxL |0〉を計算すると、

pLe
αxL |0〉 = ([pL , eαxL ] + eαxLpL) |0〉 ,

= αeαxL |0〉 . (3.68)

となる。pRについても同様。よって、(3.66)が成り立つ。
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このセクションではHirbert空間でトレースを取る場合、具体的な基底としてvertex operator
の基底 (3.65)を用いるとする。ZB

2 ゲージ場がない場合の計算 (3.73)ではHirbert空間は以下の
ように張られる。

H = Span { |0;n,w〉 , n, w ∈ Z } . (3.69)

準備が整ったのでそれぞれの ZB
2 ゲージ場の配位に対して分配関数を求めてみよう。

• (T0, T1) = (0, 1)の場合:
この場合、図 3の左から二つ目のように、トーラスの時間方向 (Imω 方向)に沿って非
局所演算子 ηがある場合に対応する。ZB

2 ゲージ場がない場合は vertex operatorの基底
|0;n,w〉 , n, w ∈ ZでHirbert空間を張ることができたが、今回の場合はwinding number
がw ∈ Z+ 1

2 と変更を受ける。というのも、T1 = 1の定義より、X(φ+2π) = X(φ)+πR

となる。モード展開 (3.61)を用いて差分X(φ+ 2π)−X(φ)評価すると、

X(ze2πi, ze−2πi)−X(z, z) = XL(ze2πi) +XR(ze−2πi)−XL(z)−XR(z) ,
= 2π(pL − pR) ,
= 2πwR . (3.70)

となる。これがmod 2πRで πRに等しいと置くと、winding numberとmomentum num-
berは以下の制約を受ける。

2πwR = πR (mod 2πR) ,

⇒ w ∈ Z + 1
2
. (3.71)

ここで、mod 2πRで式を評価したが、これは compact bosonの場の値に関する条件X ∼
X + 2πRから必要である。このことから Hibert空間は以下のように貼られることがわ
かる。

H̃ = Span
{
|0;n,w〉 , n ∈ Z , w ∈ Z + 1

2

}
. (3.72)

このようにwinding numberが半整数になるHirbert空間は “twisted sector”と呼ばれる。
よって、トーラスの分配関数は (3.73)と同様の計算すると以下の結果が得られる。

ZB[01, R, τ ] = 1
|η(τ)|2

∑
n∈Z

∑
w∈Z+ 1

2

q
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

. (3.73)

• (T0, T1) = (1, 0)の場合:
この場合、図 3の右から二つ目のように、トーラスの空間方向 (Reω方向)に沿って非局
所演算子 ηがある場合に対応する。この場合、時間一定面でHirbert空間を張ったときに
非局所演算子 ηはHirbert空間に影響を与えない。ただし、非局所演算子 ηが空間方向に
存在することから分配関数を求める際のトレースは以下のように変更される。

ZB[10, R, τ ] = TrH
[
η̂ qL0qL0

]
. (3.74)
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ここで、η̂がvertex operatorの基底 |0;n,w〉にどのように作用するかを考えてみよう。η̂は
場に対して (3.62)のように作用することから、XL, XRに対しては η̂XL,R(z) = XL,R(z)+
πR/2と作用する。よって、(3.65)より、基底 |0;n,w〉に対しては以下のように作用する。

η̂ |0;n,w〉 = (−1)n |0;n,w〉 . (3.75)

これを用いて ZB[10, R, τ ]を計算すると、

ZB[10, R, τ ] = TrH
[
η̂ qL0qL0

]
,

=
∑
n,w∈Z

〈0;n,w| η̂ qL0qL0 |o;n,w〉 ,

= 1
|η(τ)|2

∑
n,w∈Z

(−1)nq
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

, (3.76)

よって、(T0, T1) = (1, 0)の場合の分配関数が計算できた。
• (T0, T1) = (1, 1)の場合:
最後に、(T0, T1) = (1, 1)の場合は ZB

2 ゲージ場が両方向に入ってる場合、つまり図 3の
右に対応している。この場合は非局所演算子 η̂がHirbert空間を twist sectorに変え、さ
らに空間的にも存在していることから、分配関数は以下のようになる。

ZB[11, R, τ ] = TrH̃

[
η̂ qL0qL0

]
,

=
∑
n∈Z

∑
w∈Z+ 1

2

〈0;n,w| η̂ qL0qL0 |o;n,w〉 ,

= 1
|η(τ)|2

∑
n∈Z

∑
w∈Z+ 1

2

(−1)nq
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

. (3.77)

よって、全ての ZB
2 ゲージ場の配位に対して free compact bosonの分配関数を求めることがで

きた。以上の結果をまとめると、

トーラス上の free compact bosonの分配関数 (一般のmoduliの時):

ZB[00, R, τ ] = 1
|η(τ)|2

∑
n∈Z

∑
w∈Z

q
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

,

ZB[01, R, τ ] = 1
|η(τ)|2

∑
n∈Z

∑
w∈Z+ 1

2

q
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

,

ZB[10, R, τ ] = 1
|η(τ)|2

∑
n∈Z

∑
w∈Z

(−1)nq
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

,

ZB[11, R, τ ] = 1
|η(τ)|2

∑
n∈Z

∑
w∈Z+ 1

2

(−1)nq
1
2 (n/R+wR/2)2

q̄
1
2 (n/R−wR/2)2

.

(3.78)
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また、特別な場合としてトーラスのmoduliが純虚数である場合を考えてみよう (τ = iℓ)。
この場合付録 Bにまとめた theta関数と eta関数を用いると以下のようにシンプルに書き下す
ことができる。

トーラス上の free compact bosonの分配関数 (moduliが純虚数の時):

ZB[00, R, i ℓ] = 1
η(i ℓ)2 ϑ3

(
i 2 ℓ
R2

)
ϑ3

(
i R

2 ℓ

2

)
,

ZB[01, R, i ℓ] = 1
η(i ℓ)2 ϑ3

(
i 2 ℓ
R2

)
ϑ2

(
i R

2 ℓ

2

)
,

ZB[10, R, i ℓ] = 1
η(i ℓ)2 ϑ4

(
i 2 ℓ
R2

)
ϑ3

(
i R

2 ℓ

2

)
,

ZB[11, R, i ℓ] = 1
η(i ℓ)2 ϑ4

(
i 2 ℓ
R2

)
ϑ2

(
i R

2 ℓ

2

)
.

(3.79)

今回の場合もトーラスのmodular S 変換 ℓ → 1
ℓ の変換性が明確である (付録の公式 (B.7)

参照)。
modular S 変換の変換性:

ZB[00, R, i ℓ]→ ZB[00, R, i ℓ] , ZB[01, R, i ℓ]→ ZB[10, R, i ℓ],
ZB[10, R, i ℓ]→ ZB[01, R, i ℓ] , ZB[11, R, i ℓ]→ ZB[11, R, i ℓ],

(3.80)

この場合も fermionの時と同様に図 3の解釈から納得できる。

3.4 free compact boson / free massless fermion 双対性
このセクションではトーラスにおけるmassless free fermionと free compact bosonの対応を考
察しよう。局所的な演算子対応 (2.58)より、free compact bosonは free のDirac fermionと双
対のはずである。massless free Dirac fermionの分配関数は (3.41)の結果より以下の通り16。

トーラス上のmassless free Dirac fermionの分配関数

ZF[AA] =
∣∣∣∣ϑ3(τ)
η(τ)

∣∣∣∣2 , ZF[AP] =
∣∣∣∣ϑ2(τ)
η(τ)

∣∣∣∣2 ,

ZF[PA] =
∣∣∣∣ϑ4(τ)
η(τ)

∣∣∣∣2 , ZF[PP] = 0
(

=
∣∣∣∣ϑ1(τ)
η(τ)

∣∣∣∣2
)
,

(3.81)

この分配関数と boson側の結果 (3.79)を比較してみよう。どうやら、これらの分配関数は
fermion側と boson側とでそのままでは一致していないように見える。そもそも、fermionの

16Dirac fermionはMajorana fermion二つ分 (ψ = ψ1 + iψ2)なのでMajorana fermionの分配関数を二乗しな
いといけないことに注意。
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場合はトーラスの spin structureに依存するが、bosonの場合は依存しないという違いがる。
fermion側の分配関数が boson側と一致するためには少なくとも spin structureに依らないよ
うにする必要がある。そこで、試しに fermion側で全ての spin structureの分配関数を足し上
げてみよう。簡単のため τ = iℓとして計算すると、

1
2

(ZF[AA] + ZF[AP] + ZF[PA] + ZF[PP])

= 1
2η2(iℓ)

(
ϑ2

2(iℓ) + ϑ2
3(iℓ) + ϑ2

4(iℓ)
)
,

= 1√
2η2(iℓ)

(
ϑ4

3(iℓ) + ϑ2
2(iℓ)ϑ2

3(iℓ) + ϑ2
3(iℓ)ϑ2

4(iℓ) + ϑ2
4(iℓ)ϑ2

2(iℓ)
)1/2

,

= ϑ3

( iℓ
2

)
ϑ3(2iℓ) ,

= ZB[00, R = 2, i ℓ] , (3.82)

となり、boson側の分配関数に一致した。ここで、2行目から 3行目にかけては theta関数の公
式 (B.3)を用い、3行目から 4行目にかけては (B.5),(B.6)を用いた。また、今度は boson側の
分配関数から fermionの分配関数を再現することを考えてみよう。例えば以下のような和を計
算すると、

1
2

(ZB[00, 2, i ℓ] + ZB[01, 2, i ℓ] + ZB[10, 2, i ℓ]− ZB[11, 2, i ℓ])

= 1
2η2(iℓ)

(
ϑ3

( iℓ
2

)
(ϑ3(2iℓ) + ϑ2(2iℓ)) + ϑ4

( iℓ
2

)
(ϑ3(2iℓ)− ϑ2(2iℓ))

)
,

= ϑ2
3(iℓ)
η2(iℓ)

,

= ZF[AA] . (3.83)

と fermion側の分配関数と一致した。ここで、2行目から 3行目にかけては theta関数の公式
(B.3),(B.5),(B.6)と、恒等式√a±

√
b =

√
a+ b± 2

√
abを用いた。

この具体例からわかるように、トーラスのように非自明なサイクルを持った時空の場合、
Z2ゲージ場に関する足しあげ (fermionでは spin structureに関する足しあげと等価)が必要で
あることが推測できる。一般に非自明なサイクルを持つ時空におけるボソン/フェルミオン双対
性ではこのような “Z2ゲージ化”が必要である。さらに Z2ゲージ化を行う際に、Z2ゲージ場
に依存した重みで足しあげる必要があることがわかった。

3.5 ボソン/フェルミオン双対性の辞書
前のセクションではトーラス上のmassless free fermionと free compact bosonの分配関数を計
算し、それら一致するためには適切な重みをかけながら Z2ゲージ化を行う必要があると推測
できた。先行研究 [20, 21],ではこのような対応に関するより精密な議論がなされ、現在では時
空に非自明なサイクルがある場合のボソン/フェルミオン双対性の辞書が知られている。boson
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から fermionを構成する辞書は模式的に書くと以下のようになる。

F = B × (Kitaev)
ZB

2
. (3.84)

ここで、(Kitaev)は後で説明する TQFTであり、 1
ZB

2
は boson側での ZB

2 ゲージ化を表す。こ
のセクションではこれについて詳しく説明しよう。正確なボソン/フェルミオン双対性の辞書は
以下で与えられる。

フェルミオン化の辞書:
非自明なサイクルのあるリーマン面の場合、bosonの分配関数から対応する fermionの分配関
数を構成する方法は以下で与えられる。

ZF[S · ρ] = 1
2g
∑
t

ZB[t] · exp
[
iπ

(
Arf[t · ρ] + Arf[ρ] +

∫
t ∪ S

)]
. (3.85)

ここで ρは考えている Riemann面X の spin structure、S ∈ H1
(
X,ZF

2

)
は ZF

2 対称性に対す
る background離散ゲージ場である。t ∈ H1

(
X,ZB

2

)
は ZB

2 対称性に対する dynamicalな離散
ゲージ場であり、∑tはとりうる全ての configulationについても和を表す。また、Arf[ρ]はArf
invariantと呼ばれる量であり、2次元の場合mod 2 index I[ρ]と値が等しい。

Arf[ρ] = I[ρ] . (3.86)

この辞書はさまざまなモデルを調べる上でこれではないかと類推されて得られたものであ
る。そういう意味で完璧な証明はないのでひとまず受け入れることを勧める。これ以降はこの
辞書の使い方を具体例を挟みながら解説していく。
まずは S · ρといった表記法について説明する。Z2ゲージ場の holonomyは fermion場の境

界条件に寄与するため、元々の spin structureと Z2ゲージ場の寄与を合わせて S · ρと表記し
ている。以下の torusの例をみるとわかりやすいだろう。

具体例：トーラス
図 1ようにトーラスの 2つの cycleを γ0, γ1と呼ぶとする。
例えば spin structureが ρ = AAとする。Z2ゲージ場のholonomyをSi =

∮
γi
S ∈ {0, 1}, i =

0, 1とすると、S · ρは Z2ゲージ場の値 S = (S0, S1)に応じて以下のようになる。

(0, 0) ·AA = AA,
(0, 1) ·AA = AP,
(1, 0) ·AA = PA,
(1, 1) ·AA = PP.

(3.87)

より genusが多い場合も同様である。
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γ1

γ0

図 4. トーラスの図。γ0, γ1 はトーラスの非自明な 2つのサイクルを表す。

Arf invariantやカップ積に関しては具体例を見ていくのが良いだろう。2次元の場合、Arf
invariantとmod 2 indexと等価であるためこの修士論文では特に区別せず使う。トーラスの場
合Arf invariantは以下のような値になる。

トーラスの場合のArf[ρ]の値：

Arf [ϱ] =
{

0 ϱ = AP , PA , AA ,

1 ϱ = PP .
(3.88)

Proof. ここではmod 2 indexとしてArf invariantを計算してみよう。mod 2 indexは以下
のように計算できる。

I[ρ] = ( /Dρψ = 0の解の個数) mod 2 . (3.89)

具体的に /Dρψ = 0を解く。ガンマ行列の具体形 (3.20)を用いると、

/Dρψ = (γ0∂0 + γ1∂1)ψ =

 0 ∂z

∂z 0

 ψ(z)
ψ(z)


=

 ∂zψ(z)
∂zψ(z) .

 (3.90)

よって、これがゼロとなるためには ψ =const しか許されない。ψ =const の解は自明に
ψ(z + 1) = ψ(z), ψ(z + τ) = ψ(z)となる。よって、ϱ = PPの解は constの一つ、ϱ =
PA, AP, AAは解が無い (解が 0つ)。よって、mod 2 index の値は (3.88)となる。

最後に、カップ積 ∫
t ∪ Sについてコメントする。カップ積は cohomologyで数学的に定義

されているが、我々としては通常のウェッジ積として扱って問題ない。これもトーラスの具体
例を見るとイメージが湧きやすいだろう。
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トーラスにおけるカップ積 ∫
t ∪ S:

トーラスの場合カップ積 ∫
t ∪ Sは以下のように計算できる。∫
t ∪ S =

∫
γ0
t ·
∫
γ1
S −

∫
γ1
t ·
∫
γ0
S

= t0S1 − t1S0 , (3.91)

ここで、Si, ti, i = 0, 1は Torusのループ γ1に関する holonomy(図 4参照)である;

ti :=
∮
γi
t, Si :=

∮
γi
S (3.92)

Si, tiは Z2ゲージ場であるため 0か 1の値しか取らない。例えばゲージ場の configulation
が S = (01), t = (11)の時、∫ t ∪ Sの値は∫

t ∪ S = t0S1 − t1S0 = 1 · 1− 1 · 0 = 1 ,

となる。

このようにしてフェルミオン化の辞書 (3.85)の TQFT factor (Kitaev) を計算し、ゲージ
化を行うことで bosonから fermionを構成することができる。
また、少し余談をすると逆に fermionから bosonを構成することもできる。これはボソン

化と呼ばれる操作である。ボソン化の辞書は以下の通り。

ボソン化の辞書:

ZB[T ] = 1
2g
∑
s

ZF [s · ρ] · exp
[
iπ

(
Arf[T · ρ] + Arf[ρ] +

∫
s ∪ T

)]
(3.93)

これはフェルミオン化の辞書 (3.85)から導くことができる17。

Proof. 証明にはAにまとめたArf invariantの公式を用いる。(3.85)を仮定して、(3.93)の

17フェルミオン化の辞書 (3.85)とボソン化の辞書 (3.93)はフーリエ変換、逆フーリエ変換の関係に似ている。逆
操作ができるという意味でもフェルミオン化, ボソン化の辞書がよく考えて作られているものだと言える。
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右辺を計算してみよう。

((3.93)の右辺) = 1
2g
∑
s

ZF [s · ρ] · exp
[
iπ

(
Arf[T · ρ] + Arf[ρ] +

∫
s ∪ T

)]
,

= 1
22g

∑
s,t

ZB[t] exp

iπ
Arf[t · ρ] + Arf[T · ρ] + 2Arf[ρ]︸ ︷︷ ︸

=0

+
∫
s ∪ (T +t︸︷︷︸

→−t

)


 ,

= 1
22g

∑
s,t

ZB[t] exp
[
iπ

(
Arf[t · ρ] + Arf[T · ρ] +

∫
s ∪ (T − t)

)]
,

ここで、Arf[ρ]と ∫
s ∪ tが 0か 1の値しか取らないことに加え、exp(iπ#)の形からmod 2

で式を評価して良いことを用いた (eiπ と e−iπ, e3iπ, · · · は同じ)。さらに公式 (A.3)を用い
ると、

((3.93)の右辺) =
∑
t

ZB[t] exp [iπ (Arf[t · ρ] + Arf[T · ρ])] · δT,t ,

= ZB[T ] exp

iπ (2Arf[t · ρ])︸ ︷︷ ︸
=0

 ,

= ZB[T ] ,
= ((3.93)の左辺) . (3.94)

よってフェルミオン化の辞書から bosonizationの辞書が示せた。逆も同様に示せる。

さらに、こうして作られた bosonの分配関数は spin structureに依らない。Bosonの理論は
当然 spin structureに依らないのでこれは consistentな結果である。念の為下で証明しておく。

ZB[T ]が spin structureに依らないこと：
ϱ′ = ϱ ·T ′(T ′は任意の値を持つZ2ゲージ場)としてBosonizationの辞書 (3.93)を用いると、

ZB[T ; ϱ′] = 1
2g
∑
s

ZF [s · ϱ′] · exp
[
iπ

(
Arf[T · ϱ′] + Arf[ϱ′] +

∫
s ∪ T

)]
,

= 1
2g
∑
s

ZF [(s+ T ′) · ϱ] · exp
[
iπ

(
Arf[(T + T ′) · ϱ] + Arf[T ′ · ϱ] +

∫
s ∪ T

)]
,

ここで和の変数を s→ s′ = s+ T ′と変換すると、

ZB[T ; ϱ′] = 1
2g
∑
s′

ZF [s′ · ϱ] · exp
[
iπ

(
Arf[(T + T ′) · ϱ] + Arf[T ′ · ϱ] +

∫
(s′ − T ′) ∪ T

)]
,
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さらに公式 (A.2)を用いて計算をすると、

ZB[T ; ϱ′] = 1
2g
∑
s′

ZF [s′ · ϱ] · exp
[
iπ

(
Arf[T · ϱ] + 2Arf[T ′ · ϱ] + Arf[ϱ] +

∫
s′ ∪ T

)]
,

= 1
2g
∑
s′

ZF [s′ · ϱ] · exp
[
iπ

(
Arf[T · ϱ] + Arf[ϱ] +

∫
s′ ∪ T

)]
,

= ZB[T ; ϱ] . (3.95)

よって、bosonizationの辞書 (3.93)は spin structureに依らないことが示せた。

3.6 free compact boson model / massless Thirring model

それではこのセクションの最後にボソン/フェルミオン双対性の応用例として以下の massless
Thirring modelを扱ってみよう [26]。

massless Thirring model

作用： I[λ, τ ] =
∫

T
d2x

[
iψ /∂ ψ + π

2
λ (ψ γµ ψ)(ψ γµ ψ)

]
, (3.96)

ψ : Dirac fermion, λ : Thirring coupling
ZF

2対称性： ψ → −ψ . (3.97)

見ての通りこのモデルには femrionの 4点相互作用が含まれており、そのまま分配関数を
求めるのは非常に困難である。しかし、ボソン/フェルミオン双対性を用いるとこれを厳密に解
くことができる。まずは演算子対応 (2.48)を用いて massless Thirring modelと双対な boson
のモデルを特定してみよう。ラグランジアンの項は

iψ/∂ψ ⇐⇒ 1
8π

(∂ϕ)2 ,

ψ γµ ψ ⇐⇒ 1
2π
ϵµν∂νϕ .

(3.98)

と対応することを用いると fermionの相互作用項は boson側で見ると kineticな項になってしま
う。これより、massless Thirring modelは以下の free compact bosonと等価である [19, 20]18。

18実は単純な係数比較だけではR2 = 1 +λとなるが、実際は 4
R2 = 1 +λが正しい。これをちゃんと説明するには

込み入った議論が必要なのでここでは避けた。[20]の sec 3.5ではこのあたりの議論を (わかりづらく)書いている。
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free compact boson model (⇐⇒ massless Thirring model)

作用：I[R] = R2

8π

∫
T

d2x ∂µϕ∂
µϕ , (3.99)

ϕ ∼ ϕ+ 2π : compact boson,
4
R2 = 1 + λ , (3.100)

ZB
2対称性：ϕ→ ϕ+ π . (3.101)

それでは実際にフェルミオン化の辞書を使ってmassless Thirring modelの分配関数ZF[ϱ, λ, iℓ]
を計算してみよう。今回はトーラスの spin structureを ϱ = AAとする。この時、フェルミオ
ン化の辞書 (3.85)を具体的に使うと以下のようになる。

ZF[AA, λ, iℓ] = 1
2

∑
t∈H1(T,Z2)

ZB[t, R, iℓ] · exp [iπ (Arf[ t ·AA] + Arf[AA])]

= 1
2


ZB[00, R, iℓ] · exp [2iπArf[AA]]

+ ZB[01, R, iℓ] · exp [iπ(Arf[AP] + Arf[AA])]
+ ZB[10, R, iℓ] · exp [iπ(Arf[PA] + Arf[AA])]
+ ZB[11, R, iℓ] · exp [iπ(Arf[PP] + Arf[AA])]


= 1

2
(ZB[00, R, iℓ] + ZB[01, R, iℓ] + ZB[10, R, iℓ]− ZB[11, R, iℓ]) . (3.102)

ここで、トーラスにおけるArf invariantの値 (3.88)を用いた。この式にセクション 3.5で求め
た compact bosonの分配関数の式 (3.79)を代入すると最終的に以下の結果を得る。

massless Thirring modelの分配関数：

ZF[AA, λ, i ℓ] = 1√
2 η(i ℓ)2

 4∑
j=2

Ξj(λ, i ℓ)

 1
2

, (3.103)

ここで Ξj (j = 2, 3, 4)は以下のように定義した。

Ξj(λ, i ℓ) ≡ ϑ2
j (i ℓ (1 + λ)) ϑ2

j

( i ℓ
1 + λ

)
. (3.104)

Proof. 多少難しい変形を含むので一応計算方法を書いておく。この証明では煩雑さを避け
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るため以下の略記号を用いるとする。

ϑj ≡ ϑ2
j (i ℓ (1 + λ)) , ϑ̃j ≡ ϑ2

j

( i ℓ
1 + λ

)
, j = 1, 2, 3 . (3.105)

それではフェルミオン化による公式 (3.102)を計算して行こう。まず第 1項と第 2項の和を
theta関数の公式 (B.5),(B.6)を用いると以下のように評価できる。

ZB[00, R, i ℓ] + ZB[01, R, i ℓ] = 1
η(i ℓ)2ϑ3

(
iℓ 1 + λ

2

)[
ϑ3

(
iℓ 2

1 + λ

)
+ ϑ2

(
iℓ 2

1 + λ

)]
= 1√

2η(i ℓ)2

(
ϑ2

3 + ϑ2
2

)1/2
[(
ϑ̃2

3 + ϑ̃2
4

)1/2
+
(
ϑ̃2

3 − ϑ̃2
4

)1/2
]

= 1
η(i ℓ)2

[
ϑ2

3 + ϑ2
2

]1/2
[
θ̃2

3 +
(
θ̃4

3 − θ̃4
4

)1/2
]1/2

= 1
η(i ℓ)2

[(
ϑ2

3 + ϑ2
2

) (
ϑ̃2

3 + ϑ̃2
2

)]1/2
,

(3.106)

ここで 2行目から 3行目に移る際は初頭的な公式√a+
√
b =

√
a+ b+ 2

√
ab、３行目から

4行目は theta関数の公式 (B.3)を用いた。同様に (3.102)の第三項と第四項の和も計算す
ると

ZB[10, λ, i ℓ]− ZB[11, λ, i ℓ] = 1
η(i ℓ)2

[(
ϑ2

3 − ϑ2
2

) (
ϑ̃2

3 − ϑ̃2
2

)]1/2
. (3.107)

となる。得られた式 (3.106),(3.107)を (3.102)に代入すると、

ZF[AA, λ, i ℓ] = 1
2η(i ℓ)2

[[(
ϑ2

3 + ϑ2
2

) (
ϑ̃2

3 + ϑ̃2
2

)]1/2
+
[(
ϑ2

3 − ϑ2
2

) (
ϑ̃2

3 − ϑ̃2
2

)]1/2
]

= 1√
2 η(i ℓ)2

[
ϑ2

2 ϑ̃
2
2 + ϑ2

3 ϑ̃
2
3 +

[(
ϑ4

3 − ϑ4
2

) (
ϑ̃4

3 − ϑ̃4
2

)]1/2
]1/2

= 1√
2 η(i ℓ)2

[
ϑ2

2 ϑ̃
2
2 + ϑ2

3 ϑ̃
2
3 + ϑ2

4 ϑ̃
2
4

]
= (3.103) ,

(3.108)

よって、(3.103)が証明できた。

このようにしてボソン/フェルミオン双対性を用いてmassless Thirring modelの分配関数
を厳密に求めることができた。相互作用を含んでいるにも関わらず分配関数が求められている
のでこれは非常に重要な結果である。
最後に得られた分配関数の対称性についてコメントしておく。massless Thirring modelの
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分配関数 (3.103)は以下の 2つの対称性を持つ。

T-duality : λ→ λdual ≡ −
λ

λ+ 1
, (3.109)

modular S 変換 : ℓ→ 1
ℓ
. (3.110)

これらの対称性は後の研究のセクションで重要となる19。

Proof. T-dualityについては 1 + λdual = 1/(1 + λ)が成り立つことから自明に成り立つこと
が確認できる;

Ξj(λdual, i ℓ)] = ϑ2
j (i ℓ (1 + λdual)) ϑ2

j

( i ℓ
1 + λdual

)
= ϑ2

j

( i ℓ
1 + λ

)
ϑ2
j (i ℓ (1 + λ))

= Ξj(λ, i ℓ)] (3.111)

modular S 変換の対称性については theta関数のmodular変換の性質 (B.7)を用いて示すこ
とができる。実際、

4∑
j=2

Ξj (λ, i/ℓ) =
4∑
j=2

ϑ2
j (i(1 + λ)/ℓ) ϑ2

j

( i
(1 + λ)ℓ

)

= ℓ
4∑
j=2

[
ϑ2
j

( i ℓ
1 + λ

)
ϑ2
j (iℓ(1 + λ))

]

= ℓ
4∑
j=2

Ξj (λ, iℓ) ,

η(i/ℓ)2 = ℓ η(iℓ) . (3.112)

と変換するので、ZF[AA, λ, i/ℓ] = ZF[AA, λ, i ℓ]となる。

19この T-dualityは compact bosonの T-duality:R → 2
R
に起因している。時間の都合上この修士論文に書き残

すことはできなかったが、これをちゃんと導出するには boson側で Orbifoldを絡めた duality webを用いる必要が
ある [21]。付録 hogeの図 hogeに結果のみを示した。
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A B

0 or 1 0 or 1

A B

図 5. 左図：2-qubit系の模式図。系 A(赤点)と系 B(黒点)はそれぞれ 0か 1の状態を取ることができ
る (|ψ〉A = |0〉A or |1〉A)。系 B についても同様。右図：より多自由度な場合の例。今回の場合、多数
の qubitをAと Bに分けた図を描いた。この場合、系Aの状態は |1000 · · ·〉A、|0100 · · ·〉A、|1100 · · ·〉A
など、多数ある。系 B についても同様。

Part II

エンタングルメント(Review)

このパートでは、量子論におけるエンタングルメントについてのレビューする。エンタングル
メントとは一言で言うと、「古典論では説明できない量子論的な相関」である。そして、エンタ
ングルメントの大きさを測る量がエンタングルメントエントロピー (以下、EEと略すことがあ
る)であり、それと密接な関係のあるエンタングルメント Rényiエントロピー (ERE)である。
今回はこれらについて学ぶため、まずセクション 4では簡単な量子力学系を例にとりながら一
般的な定義を述べる。その後にセクション 5で場の量子論におけるエンタングルメントをどの
ように定式化するかを述べる。最後に、セクション 6,7では本研究と関係のある先行研究につ
いてレビューする。

4 エンタングルメントの基本
まずは量子力学におけるエンタングルメントの基本をレビューする。量子情報の教科書やレ
ビューは無数にあるが、ここでは有名な洋書 [2]と和書の教科書 [27]を参考にした。

4.1 導入
ここでは、エンタングルメントの導入を行う。抽象的なことを述べるよりも、まずは具体的な
話をした方がわかりやすいだろう。例として２準位系が 2つある場合を考えてみよう20。2つ
の 2準位系をそれぞれA, Bと呼ぶことにする (図 5参照)。全体系A ∪Bの状態が以下の状態
(Bell状態という)であるときを考えてみよう。

|Ψ〉 = 1√
2

(|0〉A |0〉B + |1〉A |1〉B) . (4.1)

ここで、|i〉A ⊗ |j〉B = |i〉A |j〉B (= |ij〉)と直積記号を省略する書き方を用いた。ここで、系 B
について i = 0, 1の値の観測を行ったとしよう。当然、量子論の原理から、i = 0, 1の値が出

202-qubit系と呼ぶこともある。あるいはスピン 1/2の粒子が 2つあると考えても良い。
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る確率はそれぞれ |B 〈0|Ψ〉|2 , |B 〈1|Ψ〉|2である。この時状態は観測をすると量子状態の収縮が。
つまり、

B 〈0|Ψ〉 = 1√
2
|0〉A ,

B 〈1|Ψ〉 = 1√
2
|1〉A ,

(4.2)

となり、系 B の測定を行い、結果が 0であった場合系 Aの状態は |0〉A、系 B の測定結果が 1
であった場合系Aの状態は |1〉Aと決まってしまう。これことから、系Bの測定は系Aの状態
に影響を与えている、つまり系Aと系Bは何らかの相関を持っていることがわかる。
一方、以下のような状態 |Ψ′〉を考えてみよう。

|Ψ′〉 = 1√
2

(|0〉A + |1〉A)⊗ 1√
2

(|0〉B + |1〉B) . (4.3)

この場合、同じように系Bに関する測定を行うと以下のように状態が収縮する。

B 〈0|Ψ〉 = 1√
2

(|0〉A + |1〉A) ,

B 〈1|Ψ〉 = 1√
2

(|0〉A + |1〉A) .
(4.4)

今回の場合、系Bの測定結果が 0か 1に関係なく、系Aは同じ状態に収縮している。このよう
な場合は系Aと系Bに相関はないように思える。
このような相関は量子論特有の現象であり、量子エンタングルメントと呼ばれている。今

回は 2つの二準位系を例にとったが、図 5右のように多粒子系の場合でも量子エンタングルメ
ントが考えられる。それではより一般的な量子系に対してどのように量子エンタングルメント
を定式化するかを述べよう。

4.2 エンタングルメントエントロピー
このパラグラフでは量子エンタングルメントの指標であるエンタングルメントエントロピー
(EE)を導入する。簡単のため、全体系の状態は純粋状態 (pure state)であると考える。すると
全体系の密度行列 ρtotは全体系の状態Ψtotを用いて以下のように書ける。

ρtot = |Ψtot〉 〈Ψtot| . (4.5)

量子力学の復習:
全体系は pure state |Ψtot〉だと仮定しているので、演算子Ototの期待値は以下のように計
算できる。

〈Otot〉 = 〈Ψtot| Otot |Ψtot〉 (4.6)
= 〈Ψtot| (Otot |Ψtot〉 〈Ψtot|) |Ψtot〉 (4.7)
= 〈Otot |Ψtot〉 〈Ψtot|〉 . (4.8)
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ここで、1 = 〈Ψtot|Ψtot〉 を用いた。密度行列は任意の演算子 Otot に対して、〈Otot〉 =
Tr [ρtotOtot]となるものとして定義されているので、ρtotは (4.5)で得られる。

次に、図 5の例ように全体系をAとBに分割することを考えよう。この時、系Aの基底を
|i〉A (i = 1, 2, · · · dA)とし、系Bの基底を |j〉B (j = 1, 2, · · · dB)とする。つまり、

HA = Span{ |i〉A , i = 1, 2, · · · dA } ,
HB = Span{ |j〉B , j = 1, 2, · · · dB } .

(4.9)

とする。また、全体系のHilbert空間Htotは系AのHilbert空間HAと系BのHilbert空間HB
の直積で表すことができるとする。

Htot = HA ⊗HB . (4.10)

この設定の下、我々は系Aのみにアクセスできるとする。系Aにおける密度行列は全体系の密
度行列 ρtotから構成することができる。具体的には系Bについて全ての自由度を足し上げるこ
とによって以下の系Aに対する縮約密度行列 ρAが定義できる21。

ρA := TrB [ρtot] =
dB∑
j=1

B 〈j| ρtot |j〉B . (4.11)

ここで、TrB は系Bに関する自由度のみをトレースすることから部分トレースと呼ばれる。こ
の縮約密度行列 ρAは系Aにとっての密度行列のように扱うことができる。実際、密度行列 ρtot
の持つ性質 (TrA∪B [ρtot] = 1, ρ†

tot = ρtot, ρtot ≥ 0(半正定値性))は ρAのもそのまま受け継が
れる。

縮約密度行列 (reduced density matrix)の性質：

TrA [ρA] = 1 , ρ†
A = ρA , ρA ≥ 0 (正定値性) . (4.12)

これらの性質は ρAの定義 (4.11)からすぐに示せる。さらに、系 Aに作用する演算子 OA
の期待値 〈OA〉は TrA [ρAOA]で計算することができる。

Proof. 〈OA〉 = TrA [ρAOA]:
系Aに作用する演算子OAは全体系で見るとO = OA ⊗ 1B と書ける (1B は系Bにおける

21今、系 B については我々は干渉できないと仮定しているので、系 B をトレースアウトするのは自然である。
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identity operator)。これより、OAの期待値は以下のように変形できる。

〈O〉 = TrA∪B [Oρtot]
= TrA TrB [OA ⊗ 1Bρtot]

= TrA

OA TrB [ρtot]︸ ︷︷ ︸
ρA


= TrA [OAρA] (4.13)

よって、〈OA〉 = TrA [ρAOA]が示された。

この縮約密度行列 ρA を用いてエンタングルメントの指標であるエンタングルメントエン
トロピー (EE)が以下のように定義できる。

定義：エンタングルメントエントロピー (EE)
量子系を部分系AとBに分けたとする。この時、系Aと系Bの量子エンタングルメントの大
きさを表すエンタングルメントエントロピー (Entanglement entropy)は以下のように定義さ
れる。

S(A) := −TrA [ρA log ρA] . (4.14)

ここで、ρAは系Aに関する縮約密度行列 (Reduced density matrix)。

定義からわかるように、EEは ρAに対するVon Neumannエントロピーの形になっている。
つまり、ρAの形からエンタングルメント度合いを測ることができる。もし、系Aが pure state
なら S(A)はゼロになり、mixed stateなら正の値をとる。

S(A)の具体例：
系Aが pure stateの場合、ある状態 |̃i〉Aを用いて ρA = |̃i〉A 〈̃i|と書けるため EEは

S(A) = −1 · log 1 = 0 . (4.15)

とゼロになる。一方、系Aが pure stateの場合、縮約密度行列は ρA =
∑
ĩ pĩ |̃i〉A 〈̃i| , 0 ≤

pĩ ≤ 1と書けるため、EEは正になる：

S(A) = −
∑
ĩ

pĩ · log pĩ ≥ 0 . (4.16)

このことを具体例を取り上げてみてみよう。

具体例１：Bell状態
冒頭で取り上げた Bell状態 (4.1)を例にとり、EEを計算してみよう。この場合、密度行列
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ρtotの部分トレースを取ると、

ρA = TrB [|Ψ〉 〈Ψ|]
= B 〈0|Ψ〉 〈Ψ|0〉B + B 〈1|Ψ〉 〈Ψ|1〉B

= 1
2

(|0〉A 〈0|+ |1〉A 〈1|)

=

1/2 0
0 1/2

 . (4.17)

ここで、ρAを行列表示した。この結果を用いると、EEは以下のようになる。

S(A) = −TrA [ρA log ρA]

= −Tr

1/2 0
0 1/2

 ·
log(1/2) 0

0 log(1/2)

 
= log 2 . (4.18)

よって、Bell状態の場合、EEは正の値 log 2を取ることがわかった。導入で述べたように、
Bell状態はエンタングルメントを持っている状態なので、これは妥当な結果である。

具体例２：separable状態 (4.3)
今度は導入で紹介した具体例 (4.3)を扱ってみよう。導入の考察からこの状態 |Ψ′〉はエンタ
ングルメントがないように思えるが、この場合の EEはどうなるだろうか？まずは縮約密度
行列を計算してみよう。

ρA = TrB
[
|Ψ′〉 〈Ψ′|

]
= B 〈0|Ψ′〉 〈Ψ′|0〉B + B 〈1|Ψ′〉 〈Ψ′|1〉B

= 1√
2

(|0〉A + |1〉A) · 1√
2

(〈0|A + 〈1|A)

= |0̃〉A 〈0̃| (4.19)

ここで、新しい基底 |0̃〉A := (|0〉A + |1〉A)/
√

2 , |1̃〉A := (|0〉A − |1〉A)/
√

2を導入した。EE
の定義にある TrAを計算する際にこの新しい基底を用いると、

S(A) = −Tr

1 0
0 0

 ·
log(1) 0

0 0

 
= 0 . (4.20)

よって、この場合 EEはゼロであることがわかった。
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4.3 Separable状態 VS Entangle状態
EEはエンタングルメントの大きさを測る指標であることが分かった。では「エンタングルメン
トのある状態とない状態の違い」について一般的に議論してみよう。今、全体系A∪Bは pure
stateであり、Hirbert空間Htot は (4.10)のように書けると仮定しているので、全体系の状態
|Ψtot〉は一般的に以下のように書ける。

|Ψtot〉 =
∑
i,j

αi,j |i〉A ⊗ |j〉B . (4.21)

ここで、αi,j ∈ Cはただの係数である。

4.3.1 Separable状態
特別な例として、この係数 αi,j が以下のように系Aと系Bで分離しているとしよう。

αi,j = αAi · αBj (separable state) . (4.22)

このようになっている場合を"separable"と呼ぶことにしよう。この場合、全体系の状態 |Ψtot〉
は

|Ψtot〉 = |ΨA〉 ⊗ |ΨB〉 , (4.23)

|ΨA〉 :=
∑
i

αAi |i〉A , |ΨB〉 :=
∑
j

αBj |j〉B .

と分離できる。この時、縮約密度行列 ρAは

ρA = TrB [|Ψtot〉 〈Ψtot|]
= |ΨA〉 〈ΨA| · TrB [|ΨB〉 〈ΨB|]
= |ΨA〉 〈ΨA| . (4.24)

これは系Aが pure stateであることを意味し、EEもゼロとなる。実際、冒頭で扱った具体例
(4.3)も (4.23)の形をしているので、separableになっている。

4.3.2 Entangle状態
今度は Separableでない状態、つまり αi,j 6= αAi α

B
j となるような状態を考え、EEが正になる

ことを見てみよう。今後の便利のため、係数 αi,j を (dA × dB)行列の成分とみなして、以下の
特異値分解を行うことを考えよう。

特異値分解 (Singular Value Decomposition; SVD):
α=(dA× dB)行列とする。すると、行列 αは (dA× dA)ユニタリー行列U と (dB × dB)ユニタ
リー行列 V を用いて以下のように分解できる。

α = UΣV † , (4.25)

– 48 –



ここで、Σは (dA × dB)以下で与えられる対角行列：

Σ = diag
(√

p1,
√
p2, · · · ,

√
pmin(dA,dB)

)
=




√
p1

. . . 0
√
pdA

 (dA < dB) ,



√
p1

. . .
√
pdB

0

 (dA ≥ dB) ,

(4.26)

これより、一般的な状態 |Ψtot〉は以下のように表せる。

|Ψtot〉 =
∑
i,j

αi,j |i〉A ⊗ |j〉B

=
dA∑
i

dB∑
j

min(dA,dB)∑
k

Ui,k
√
pk V

∗
j,k |i〉A ⊗ |j〉B

=
min(dA,dB)∑

k

√
pk |ψk〉A ⊗ |ψk〉B . (4.27)

最後の行で |ψk〉A :=
∑dA
i Ui,k |i〉A, |ψk〉B :=

∑dB
j V ∗

j,k |j〉Bとした。ただし、規格化条件 〈Ψtot|Ψtot〉 =
1より、∑k pk = 1である。このような分解は Schmidt 分解と呼ばれる。この基底 |ψk〉A, |ψk〉B
で縮約密度行列 ρAを計算すると、

ρA = TrB [|Ψtot〉 〈Ψtot|]

=
min(dA,dB)∑

k

B 〈ψk|Ψtot〉 〈Ψtot|ψk〉B

=
min(dA,dB)∑

k

pk |ψk〉A 〈ψk| . (4.28)

これは系Aが一般にはmixed stateであることを意味している。EEも同様に計算すると、

S(A) = −
min(dA,dB)∑

k

pk log pk , (4.29)

となる。これは pk を確率分布とみなすと Shannon entropyになっている。つまり、pk の分布
がまだらであればあるほど S(A)の値は大きくなる。実際、この S(A)係数が (p1 = p2 = · · · )
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となっているとき、S(A)最大値をとる：

max (S(A)) = log min(dA, dB) , at pk = 1
min(dA, dB)

for all k , (4.30)

Proof. S(A)を {pk}の関数ととらえ、
∑
k pk = 1という constraint付きの最大値問題と考え

れば良い。Lagrangeの未定乗数法を用いると以下の関数 S̃A({pk})の停留値を取れば良い。
min(dA, dB)と書くのが煩わしいため dと置く。

S̃A({pk}) := −
d∑
k

pk log pk + λ

(
d∑
k

pk − 1
)
, (4.31)

停留値を求めるため ∂S̃A
∂pk

= 0と置くと (k = 1, 2, · · · d)

pk = eλ−1 , (4.32)

を得る。これより、停留値を取る pkは kによらないことがわかった。よって、∑d
k=1 = 1の

制限から pk = 1/dであることがわかり、その停留値は、

S̃A({pk = 1/d}) = log d , (4.33)

となる。よって、(4.30)が示せた。

このことから冒頭で紹介した Bell状態 (4.1)は 2qubit系における Maximally entangled
stateであったことがわかった。最後にこのセクションの内容をまとめる。

エンタングルメントエントロピーの性質：

S(A)

= 0 , |Ψtot〉 = |ΨA〉 ⊗ |ΨB〉 (Separable) ←→ ρA : pure state,
> 0 , |Ψtot〉 6= |ΨA〉 ⊗ |ΨB〉 (Entangled) ←→ ρA : mixed state .

(4.34)

4.4 Subaditivityと相互情報量
ここで、エンタングルメントエントロピーが満たす重要な不等式を一つ紹介したい。注目している
系Aが 2つの系A1, A2で構成されているとする (A = A1∪A2)。この時、以下のSubaditivity(劣
加法性)が成り立つことが知られている22。

EEの subaditivity：

S(A1 ∪A2) ≤ S(A1) + S(A2) . (4.35)

22この修士論文では触れないが、Strong subaditivity(強劣加法性)と呼ばれる不等式も存在する。
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Proof. 多少結構テクニカルであるが、一応証明を書いておく。
まず準備として、以下の Kullback information [28] とその正値性を紹介する。

Kullback informationとその正値性：∑
k pk =

∑
k p

′
k = 1, 0 ≤ pk, p

′
k ≤ 1を満たす変数の組 {pk}, {p′

k}があるとする。
この時、以下で定義されるKullback information K ({pk}, {p′

k})は 0以上となる。

K
(
{pk}, {p′

k}
)

:=
∑
k

pk log
(
pk
p′
k

)
≥ 0 . (4.36)

Kullback informationの正値性の証明は関数の性質 log x ≥ 1 − 1
x を用いると割とすぐで

きる：
K
(
{pk}, {p′

k}
)

=
∑
k

pk log
(
pk/p

′
k

)
≥
∑
k

pk
(
1− p′

k/pk
)

=
∑
k

pk −
∑
k

p′
k = 0 . (4.37)

これを念頭に、S(A1) + S(A2)− S(A1 ∪A2)を変形してみよう。
S(A1) + S(A2)− S(A1 ∪A2) = TrA1∪A2 [ρA1∪A2 log ρA1∪A2 ]

− TrA1 [ρA1 log ρA1 ]− TrA2 [ρA2 log ρA2 ]
= TrA1∪A2 [ρA1∪A2 log ρA1∪A2 ]
− TrA1∪A2 [ρA1∪A2 log (ρA1 ⊗ 1B)]− TrA1∪A2 [ρA1∪A2 log (1A ⊗ ρA2)]

= TrA1∪A2 [ρA1∪A2 {log ρA1∪A2 − log (ρA1 ⊗ ρA2)}] . (4.38)

ここで、ρA1∪A2 , ρA1 ⊗ ρA2 が対角行列になるような基底をそれぞれ {|k〉}, { ˜|k〉}とする。つ
まり、

ρA1∪A2 =
∑
k

pk |k〉 〈k| , ρA1 ⊗ ρA2 =
∑
k

p̃k ˜|k〉 ˜〈k| . (4.39)

ここで固有値 {pk},{p̃k}は縮約密度行列の性質 (4.12)から∑k pk =
∑
k p̃k = 1, 0 ≤ pk, p̃k ≤

1である。これらの基底を用いて、トレースを計算すると、
S(A1) + S(A2)− S(A1 ∪A2) =

∑
k

pk log pk −
∑
k

pk 〈k| log (ρA1 ⊗ ρA2) |k〉

=
∑
k

pk log pk −
∑
k,l

pk 〈k|l〉 〈l|k〉 log p̃l .

ここからさらに logの凸性を用いて式を評価する。上に凸関数な関数 f(x)は、f(tx+ (1−
t)y) ≥ tf(x) + (1 − t)f(y) , 0 ≤ t ≤ 1が成り立つ。これを何度も用いると、f (

∑
l tlxl) ≥∑

l tlf(xl) ,
∑
l tl = 1となる。logは上に凸であるので、この不等式を用いると、

S(A1) + S(A2)− S(A1 ∪A2) =
∑
k

pk log pk −
∑
l

∑
k

pk 〈k|l〉 〈l|k〉︸ ︷︷ ︸
=tl

log p̃l

≥
∑
k

pk log pk −
∑
l

log
(∑

k

pk |〈k|l〉|2 p̃l

)
.
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ここで、p′
l =

∑
k pk |〈k|l〉|

2と置くと、

S(A1) + S(A2)− S(A1 ∪A2) ≥
∑
k

pk log
(
pk
p′
k

)
. (4.40)

となる。p′
kは定義から正の数であり、

∑
k p

′
k =

∑
k,l pl 〈l|k〉 〈k|l〉 =

∑
l pl = 1である。よって

(4.40)はKullback informationの形と一致しており、正定値性 (4.36)から subaditivity(4.35)
が従う。

この不等式から、以下の相互情報量 (Mutual information)が自然に定義できる。

定義：相互情報量 (mutual information)
全体系をAとBに分割し、部分系AがさらにA = A1 ∪A2と分割されているとする。この時、
部分系A1とA2に関する相互情報量 I(A1, A2)は以下のように定義される。

I(A1, A2) := S(A1) + S(A2)− S(A1 ∪A2) . (4.41)

相互情報量は EEの subaditivityから I(A1, A2) ≥ 0である。また、量子エンタングルメン
トを↔で表すと、

I(A1, A2) =

 B

A1 A2

+

 B

A1 A2

−
 B

A1 A2

,



=

 B

A1 A2

 ,

という形になっている。よって相互情報量 I(A1, A2)は系A1と系A2の間のエンタングルメン
トの大きさを測る量である。この相互情報量は後で何度か用いる。

4.5 エンタングルメントRényiエントロピー
ここまでの話で EEがエンタングルメントを測る指標であることを学んだ。量子情報量は他に
もあり、ここではエンタングルメントRényiエントロピー (以下、EREと略す)を紹介しよう。
EREはEEに自然数のパラメーター nを加えた一般化になっており、定義は以下で与えられる。

定義：エンタングルメントRényiエントロピー

Sn(A) := 1
1− n

log TrA [ρnA] . (4.42)
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ここで、nは自然数、ρAは系Aに関する縮約密度行列である。

このEREはEEと密接な関係がある。EREの元々の定義は自然数 nが用いられているが、
n ∈ Rと定義を実数に拡張し、n→ 1の極限を取ると EEに一致する。

EREとEEの関係：

lim
n→1

Sn(A) = S(A) . (4.43)

Proof. 今、EREの定義を n ∈ Rと拡張し、n = 1 + ∆nと置く。テイラー展開 a1+x =
a+ xa log a+O(x2)を用いると EREは以下のように変形できる。

Sn(A) = 1
−∆n

log TrA
[
ρ1+∆n
A

]
= − 1

∆n
log TrA

[
ρA + ∆nρA log ρA +O(∆n2)

]
= − 1

∆n
log

(
1 + ∆nTrA [ρA log ρA] +O(∆n2)

)
. (4.44)

最後の変形ではTrA [ρA] = 1を用いた。さらにテイラー展開 log(1 + x) = x+O(x2)を用い
ると、

Sn(A) = −TrA [ρA log ρA]︸ ︷︷ ︸
=S(A)

+O(∆n) , (4.45)

よって、∆n→ 0とすると、(4.43)を得る。

一般に EREは EEよりも計算がしやすい傾向がある。特に場の量子論において、EREは
後で述べるレプリカ法と非常に相性が良い。そのため、多くの文献ではまず EREを求めてか
ら、n→ 1の極限を取ることで EEを求めている23。
また、EREにより自然に以下の相互Rényi情報量 (以下MRIと略す)を定義できる。

定義：相互Rényi情報量 (mutual Rényi information)

In(A1, A2) := Sn(A1) + Sn(A2)− Sn(A1 ∪A2) . (4.46)

これは相互情報量 (4.41)の一般化となっており、EREと同様に limn→1 In(A1, A2) = I(A1, A2)
23これは余談だが、EREは熱力学のエントロピーと同様の不等式を満たすことが知られている。ここでパラメー

ター nは逆温度に対応する。詳しくは [29]を参照。
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V V

Vtot = V ∪ V

space

space

空間を離散化

図 6. 全空間 Vtot を部分空間 V (red)とその補空間 V (gray)に分割した場合の模式図 (左図)。場の量子
論の場合、場は空間の各点に自由度を持つ。例えば、右図のように空間を離散化して考えると、それぞ
れの格子点上に自由度がある。

が成り立つ。また、場の量子論は無限自由度なためEEやEREはUV発散するが相互Rényi情
報量はそのようなUV発散を含まず有限の値を取ることが知られている [18]。我々の研究 (セク
ション III)では EREとMRIを主に扱う。

5 場の量子論における計算手法：レプリカ法

このセクションでは場の量子論におけるエンタングルメントを導入し、最も有名な計算手法で
あるレプリカ法を説明する [12]。量子力学系で系をAとBに分けたのと同様に、空間 Vtotを領
域 V とその補空間 V に分割してみよう (図 6)。場の量子論の場合それぞれの領域の自由度は無
数にある。レプリカ法はこの無限自由度の部分トレースを経路積分によって評価し、EREを求
める手法である24。以下の説明はレビュー論文 [30]と [31]を参考にした。

5.1 縮約密度行列 ρV の経路積分表示
それではレプリカ法の説明に入ろう。ここでは縮約密度行列 ρV を経路積分表示する。レプリ
カ法は bosonか fermionかで少し話が異なるが、今回は fermionを想定した議論をする。boson
のレプリカ法は fermionの場合より簡単なので、fermionが分かれば十分である。
今、Euclid時空をRdとし、、座標を (x, tE)とする (x ∈ Rd−1：空間座標、tE ∈ R：Euclid

時間)。簡単のため、全体系 Vtot = V ∪V は真空状態 |0〉にあるする。ここで、領域 V と V を図
7のように図示するとする。図示の都合上空間が 1次元の場合を描いているが、これから行う
レプリカ法の議論は高次元でも成り立つ。また、fermion場を ψとし、作用を I[ψ, ψ]とする。
また、今考えている理論は以下の fermion parity対称性を持つとする。

I [ψ , ψ ] = I [−ψ , −ψ ] . (5.1)

24ちなみにレプリカ法を用いず数値計算をする場合は実際に図 6右のように空間を離散化し、有限の自由度にし
て部分トレースを取る。
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V V V

x

tE

図 7. 2次元 Euclid時空の場合の領域 V (red)と V (dashed)の模式図。ここで、縦軸を Euclid時間 tE、
横軸をは空間 xとした。この絵では領域 V は single intervalになっているが、一般にmulti interval(V =
V1 ∪ V2 ∪ · · · )となっていても良い。

レプリカ法を理解するために必要な知識は以下で述べる identity 1、トレースTr [O]、内積 〈0|ψ〉
の経路積分表示のみである。

1 =
∫
DψDψ |ψ〉 〈ψ| , (5.2)

Tr [O] =
∫
DψDψ 〈−ψ|O|ψ〉 . (5.3)

ここで、|ψ〉は ψ̂ |ψ〉 = ψ |ψ〉を満たす状態である。fermionの場合トレースを取る際にマイナ
ス符号が出ることに注意しょう。また、任意の状態 |ψi〉 , |ψf 〉と真空 |0〉との内積は以下のよ
うに書ける。

〈0|ψi〉 = 1√
N

∫ ψ(x,∞)

ψ(x,0)=ψi
DψDψ e−I[ψ,ψ] = 1√

N
×

ψi
tE = 0

tE =∞

. (5.4)

〈ψf |0〉 = 1√
N

∫ ψ(x,0)=ψf

ψ(x,−∞)
DψDψ e−I[ψ,ψ] = 1√

N
×

ψf

tE = −∞

tE = 0

. (5.5)

ここで I[ψ, ψ]はEuclidean作用である。最右辺では経路積分をグラフィカルに表現する記法を
用いた。水色の領域は経路積分されている領域を表し、点線は境界条件を表す。状態 ψi, ψf の
情報は経路積分では境界条件として表れる。N は規格化定数であり後で決定する。
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復習：Grassmann数の identityとトレース
(5.3)と (5.2)がすぐに納得できない人は場ではないただのGrassmann数の identityトレー
スを考えてみよう。ψ̂をGrassmann数の operatorとし、|0〉 , |1〉をそれぞれ真空状態、励
起状態とする (つまり ψ̂ |0〉 := 0, |1〉 := ψ̂† |0〉とする)。この時、ψ̂ |ψ〉 = ψ |ψ〉となる状態
|ψ〉(coherent状態)は |ψ〉 = |0〉−ψ |1〉と書ける。Grassmann数の積分 ∫ dψ ψ = 1,

∫
dψ 1 =

0に注意すると、∫
dψ∗dψ |ψ〉 〈ψ| e−ψ∗ψ =

∫
dψ∗dψ (|0〉 〈0| − |0〉 〈1|ψ∗ − ψ |1〉 〈0|+ ψ |1〉 〈1|ψ∗) e−ψ∗ψ︸ ︷︷ ︸

=1−ψ∗ψ

=
∫
dψ∗dψ (���|0〉 〈0| −�����|0〉 〈1|ψ∗ −����ψ |1〉 〈0|+ ψ |1〉 〈1|ψ∗ − |0〉 〈0|ψ∗ψ)

= |0〉 〈0|+ |1〉 〈1|
= 1 . (5.6)

また、ÔをGrassmann evenな operatorとすると、∫
dψ∗dψe−ψ∗ψ 〈−ψ| Ô |ψ〉

=
∫
dψ∗dψ e−ψ∗ψ︸ ︷︷ ︸

=1−ψ∗ψ

(
〈0| Ô |0〉 − ψ∗ 〈0| Ô |1〉 − ψ 〈1| Ô |0〉 − ψ∗ψ 〈1| Ô |1〉

)
=
∫
dψ∗dψ

(
�����〈0| Ô |0〉 −������

ψ∗ 〈0| Ô |1〉 −�����
ψ 〈1| Ô |0〉 − ψ∗ψ 〈1| Ô |1〉 − ψ∗ψ 〈1| Ô |1〉

)
= 〈0| Ô |0〉+ 〈1| Ô |1〉

= Tr
[
Ô
]
. (5.7)

よって、identityとトレースをGrassmann数の積分で書くことができた。(5.2)、(5.3)はそ
れぞれ (5.6)、(5.7)の多変数版となっている。経路積分の表式でも e−ψ∗ψに対応する項は本
当は入るが、多くの文献で書くのが省略されている。

復習：Euclidean時空における遷移振幅
(5.4),(5.5)がすぐに納得できない人はEuclidean時空における遷移振幅を思い出してみよう。
初期状態 |ψi〉からEuclid時間 βだけ時間発展し、終状態 |ψf 〉になる遷移振幅は以下のよう
に書ける。

〈ψf | e−βH |ψi〉 =
∫ ψ(x,β)=ψf

ψ(x,0)=ψi
DψDψ̄ e−I[ψ,ψ̄] =

ψi

ψf

β

tE = 0

tE = β

, (5.8)

ここで、H はHamiltonianである。ここで、状態 |ψf 〉を以下のようにエネルギー固有状態
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|n〉でモード展開したとしよう。

|ψf 〉 =
∑
n

Cn |n〉 , H |n〉 = En |n〉 , E0 < E1 < E2 < · · · . (5.9)

すると、β →∞の極限で (5.8)が 〈0|ψi〉に比例することがわかる。

lim
β→∞

〈ψf | e−βH |ψi〉 = lim
β→∞

∑
n

Cn e−βEn︸ ︷︷ ︸
e−βE0>>e−βE1>>···

〈n|ψi〉

∝ 〈0|ψi〉 (5.10)

よって、(5.4)が示された。同様に |ψi〉の方をモード展開し、β →∞の極限を取ると (5.5)
が示せる。

これらの経路積分表示を用いて、縮約密度行列 ρV を経路積分表示する。後で部分トレー
スを取る都合上、場 ψV , ψV を導入する。

ψV (x) := ψ(x ∈ V, tE = 0)
ψV (x) := ψ(x ∈ V , tE = 0) .

(5.11)

状態 |ψ〉を |ψV ⊕ ψV 〉と書くとすると内積 〈0|ψV ⊕ ψV 〉 , 〈ψV ⊕ ψV |0〉は以下のように経路積
分で書ける。

〈0|ψV ⊕ ψV 〉 = 1√
N

∫ ψ(x,∞)
ψ(x∈V,0)=ψV
ψ(x∈V ,0)=ψ

V

DψDψ e−I[ψ,ψ] ,

= 1√
N
×

ψVψV ψV
tE = 0

tE =∞

, (5.12)

〈ψV ⊕ ψV |0〉 = 1√
N

∫ ψ(x∈V,0)=ψV
ψ(x∈V ,0)=ψ

V

ψ(x,−∞)
DψDψ e−I[ψ,ψ] ,

= 1√
N
×

ψVψV ψV

tE = −∞

tE = 0

, (5.13)

– 57 –



場の量子論において領域 V に関する部分トレースを TrV [O] :=
∫
DψVDψV 〈−ψV | O |ψV 〉

と定義すると、縮約密度行列の行列要素 〈ψV | ρV |ψ′
V 〉は以下のように評価できる。

〈ψV | ρV |ψ′
V 〉 = 〈ψV |TrV [|0〉 〈0|] |ψ′

V 〉

=
∫
DψVDψV 〈ψV ⊕ (−ψV )|0〉 〈0|ψ′

V ⊕ ψV 〉 ,

= 1
N

∫
DψVDψV

ψV−ψV −ψV

tE = −∞

tE = −0

ψ′
VψV ψV

tE = +0

tE =∞

,

= 1
N

∫
DψVDψV

−ψVψV ψV
tE = −0

ψ′
VψV ψV

tE = +0
l lgluing ,

= 1
N
×

ψ′
V

−ψV
tE = +0
tE = −0 ,

= 1
N

∫
ψ(x∈V,+0)=ψ′

V
ψ(x∈V,−0)=−ψV

DψDψ e−I[ψ,ψ] . (5.14)

ここで、３行目から４行目に行く時に fermion parity対称性 (5.1)を用い、tE < 0において変
数変換 ψ → −ψを行った。4行目から５行目は経路積分の gluing公式を用いた。
さて、それでは規格化定数N の値を決定するとしよう。縮約密度行列の性質TrV [ρV ] = 1
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を用いると、

1 = TrV [ρV ]

=
∫
DψVDψV 〈−ψV | ρV |ψV 〉

= 1
N

∫
DψVDψV

∫
ψ(x∈V,+0)=ψV
ψ(x∈V,−0)=ψV

DψDψ e−I[ψ,ψ]

= 1
N
×
∫
DψVDψV

ψV

ψV



= 1
N

∫
DψDψ e−I[ψ,ψ]

= 1
N
×


= 1
N
Z1 . (5.15)

ここで、分配関数を Z1と置いた。この式から規格化定数の値はN = Z1であることが分かっ
た。最後に、得られた結果をまとめておこう。

縮約密度行列の経路積分表示：

〈ψV | ρV |ψ′
V 〉 = 1

Z1

∫
ψ(x∈V,+0)=ψ′

V
ψ(x∈V,−0)=−ψV

DψDψ e−I[ψ,ψ] (5.16)

= 1
Z1
×

ψ′
V

−ψV

tE = +0
tE = −0 (5.17)

ここで、Z1はこの系の分配関数。

境界条件に現れるマイナス符号は非常に重要である。なお、bosonの場合はこのようなマ
イナス符号は現れない。

経路積分のグラフィカル表示について：
(5.17)もそうだが、我々はしばしば経路積分をグラフィカルに表記している。この表記法は
計算をする上でとても便利である。もしこの表記法を用いずに数式だけで計算するととても
煩雑になる。例えば (5.14)の導出を数式のみで書くと以下のようになる。スペースの都合上
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DψDψをまとめてDψと略記する。

〈ψV | ρV |ψ′
V 〉 =

∫
DψV̄ 〈ψV ⊕ (−ψV̄ )|0〉 〈0|ψ′

V ⊕ ψV̄ 〉

= 1
N

∫
DψV̄

∫ ψ′′(x∈V,−0)=ψV
ψ′′(x∈V̄,−0)=−ψV̄
ψ′′(x,−∞)

Dψ′′ e−I[ψ′′]
∫ ψ′′′(x,∞)

ψ′′′(x∈V,+0)=ψ′
V

ψ′′′(x∈V̄,+0)=ψV̄

Dψ′′′ e−I[ψ′′′]

↓ variable change : ψ′′ → −ψ′′

= 1
N

∫
DψV̄

∫ ψ′′(x∈V,−0)=−ψV
ψ′′(x∈V̄,−0)=ψV̄

ψ′′(x,−∞)
Dψ′′ e−I[ψ′′]

∫ ψ′′′(x,∞)

ψ′′′(x∈V,+0)=ψ′
V

ψ′′′(x∈V̄,+0)=ψV̄

Dψ′′′ e−I[ψ′′′]

= 1
N

∫
ψ(x∈V,+0)=ψ′

V
ψ(x∈V,−0)=−ψV

Dψ e−I[ψ] .

当然 (5.14)と同じ結果にはなるが途中式が煩雑である。特に経路積分の境界条件とかごちゃ
ごちゃしている。〈ψV | ρV |ψ′

V 〉の計算ならこの程度の煩雑さで済むが、より複雑な計算をす
る場合は数式のみで書くとしんどくなってくる。よってこれ以降は特に断らなくても経路積
分をグラフィカルに表記するとする。

5.2 TrV [ρnV ]とレプリカ多様体 Σn

前のセクションで縮約密度行列 ρV の経路積分表示を求めた。今度はこの結果を用いて、ERE
に出てくるTrV [ρnV ]を経路積分表示してみよう。一般の nで議論するよりもまずは n = 2, 3の
例を見ると良いだろう。
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5.2.1 具体例：n = 2

実際に縮約密度行列 ρV の経路積分表示 (5.17)からTrV
[
ρ2
V

]を求めてみよう。(5.2)を用いると、

TrV
[
ρ2
V

]
=
∫
DψVDψVDψ′

VDψ
′
V 〈−ψV | ρV |ψ′

V 〉 〈ψ′
V | ρV |ψV 〉

= 1
Z2

1

∫
DψVDψVDψ′

VDψ
′
V

ψ′
V

ψV
ψ1

ψV

−ψ′
V

ψ2

↓ 2つ目のシートにおける変数変換 : ψ2 → −ψ2

= 1
Z2

1

∫
DψVDψVDψ′

VDψ
′
V

ψ′
V

ψV
ψ1

−ψV

ψ′
V

ψ2

↓ gluing

= 1
Z2

1
×

ψ1

ψ2

ψ′
V

ψV

−ψV

ψ′
V

= 1
Z2

1

∫
B.C.
Dψ1Dψ1Dψ2Dψ2 e

−I[ψ1,ψ1]−I[ψ2,ψ2] . (5.18)

このように、TrV
[
ρ2
V

]を計算する際は元々の時空を複製し、それらの時空を領域 V において適
切に繋ぎ合わせれば良いことがわかる。ここで、複製された時空をシート 1、シート 2と呼ぶ
ことにする。(5.18)の ψi (i = 1, 2)は i番目のシート上に定義される fermion場である。境界条
件 B.Cは以下で与えられる。

B.C. :

ψ1(x ∈ V,+0)
ψ2(x ∈ V,+0)

 =

 0 1
−1 0

ψ1(x ∈ V,−0)
ψ2(x ∈ V,−0)

 . (5.19)

今回の場合、境界条件に符号反転 ψ2(x ∈ V,+0) = −ψ1(x ∈ V,−0)が含まれることに注意しよ
う。
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5.2.2 具体例：n = 3

次に、もう一つの例である n = 3を考えてみよう。同じように縮約密度行列の経路積分表示を
用いて計算すると以下のようになる。煩雑さを避けるため経路積分のメジャーDψDψをDψと
略記する。

TrV
[
ρ3
V

]
=
∫
DψVDψ′

VDψ′′
V 〈−ψV | ρV |ψ′

V 〉 〈ψ′
V | ρV |ψ′′

V 〉 〈ψ′′
V | ρV |ψV 〉

= 1
Z3

1

∫
DψVDψ′

VDψ′′
V

ψ′
V

ψV
ψ1

ψ′′
V

−ψ′
V

ψ2

ψV

−ψ′′
V

ψ3

↓ 2つ目のシートにおける変数変換 : ψ2 → −ψ2

= 1
Z3

1

∫
DψVDψ′

VDψ′′
V

ψ′
V

ψV
ψ1

−ψ′′
V

ψ′
V

ψ2

ψV

−ψ′′
V

ψ3

↓ gluing

= 1
Z3

1
×

ψ1

ψ2

ψ3

ψV

ψ′
V

ψ′
V

−ψ′′
V

−ψ′′
V

ψV

= 1
Z3

1

∫
B.C.
Dψ1Dψ2Dψ3 e

−I[ψ1,ψ1]−I[ψ2,ψ2]−I[ψ3,ψ3] . (5.20)
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今回の場合 3枚のシートを貼り合わせた。ここで境界条件 B.Cは以下で与えられる。

B.C. :


ψ1(x ∈ V,+0)
ψ2(x ∈ V,+0)
ψ3(x ∈ V,+0)

 =


0 1 0
0 0 1
1 0 0



ψ1(x ∈ V,−0)
ψ2(x ∈ V,−0)
ψ3(x ∈ V,−0)

 . (5.21)

n = 2の例と違い、n = 3の場合は境界条件に符号反転がないことに注意しよう。

5.2.3 一般の nの場合
先ほど具体例として n = 2, 3を扱ったが、同じような議論が一般の nについてもすることがで
きる。要はTrV [ρnV ]を計算したければ n枚のレプリカシートを用意し、領域 V で貼り合わせれ
ば良い。レプリカ法の主張をまとめると以下の通りである。

レプリカ法まとめ：

TrV [ρnV ] = Zn
Zn1

= 1
Zn1

∫
Σn
DΨDΨ̄ e−I[Ψ,Ψ̄] , (5.22)

ここで Z1は元々の時空である Rd上の分配関数であり、Znは n枚のレプリカシートで構成さ
れる多様体 Σn(レプリカ多様体という)上での分配関数である (図 8)。Ψは k番目のレプリカ
シート上に定義される場 ψi , (i = 1, 2, · · ·n)で構成される n次元ベクトル場である：

Ψ := (ψ1, ψ2, · · · , ψn)T . (5.23)

さらに、I[Ψ, Ψ̄]は以下で定義される Euclidean作用である。

I[Ψ, Ψ̄] :=
n∑
i=1

I[ψi, ψ̄i] . (5.24)

経路積分のメジャーはDΨDΨ̄ :=
∏n
i=1DψiDψ̄i と定義され、

∫
Σn,N は以下の境界条件を意味

している：

Ψ(x ∈ V, tE = +0) = T Ψ(x ∈ V, tE = −0) , (5.25)

ここで T は n× n行列であり以下で与えられる。

T :=


0 1

. . . . . .
. . . 1

(−1)n+1 0

 . (5.26)

なお、bosonの場合は行列 T の左下の成分を+1にすれば良い。
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...

ψ1

ψ2

ψn

図 8. レプリカ多様体 Σn の図。それぞれのシートは元々の時空を表し、赤のラインは領域 V を表
す。i 番目のレプリカシートは (i + 1) 番目のレプリカシートと領域 V で繋ぎ合わせられている (i =
1, 2, · · · , n, n+ 1 = 1)。

5.3 ツイスト演算子による方法
前のセクションではの経路積分を用いてTrV [ρnV ]をレプリカシート上の分配関数として表した。
これはツイスト演算子を用いて演算子の言葉で書き直すとことができる。このことについて少
し考えてみよう。レプリカ法の結果を用いると、TrV [ρnV ]は以下のような経路積分で与えられ
る (煩雑さを避けるためDψ1Dψ1をDψ1と書くとする。つまり共役の部分を省略する)。

TrV [ρnV ] = 1
Zn1

∫
Σn
Dψ1 · · · Dψn exp

[
−
∫
R2
d2x {L(ψ1(x, tE)) + · · ·+ L(ψn(x, tE))}

]
. (5.27)

ここで、レプリカシート上の場 ψi, i = 1, 2, · · ·nの共有引数 (x, tE) ∈ R2を導入した (地味にこ
れめっちゃ重要)。また、レプリカシート上の場は以下の境界条件で結びついている。

ψi(x,+0) = ψi+1(x,−0) , i = 1, 2, · · ·n− 1 , (5.28)

ただし、i = nの場合は ψn(x,+0) = (−1)n+1ψ1(x,−0)。この境界条件の寄与を以下の作用を
する演算子として定義されるツイスト演算子 Tn, T̃nで記述することができる。

Tn(x∗, t∗E) : ψi(x, t∗E + 0)→ ψi+1(x, t∗E − 0) ,
T̃n(x∗, t∗E) : ψi+1(x, t∗E + 0)→ ψi(x, t∗E − 0) .

(5.29)

もう少しわかりやすく言うと、Tn(x∗, t∗E), T̃n(x∗, t∗E)の作用は以下のようにブランチカットを
入れることを意味する。

Tn(x∗, t∗E) :
(x∗, t∗E)

ψi

ψi+1

, T̃n(x∗, t∗E) :
(x∗, t∗E)

ψi+1

ψi

, (5.30)
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これを用いると、例えばツイスト演算子の積 Tn(x1, tE)T̃n(x1, tE)はインターバル [x1, x2]にブ
ランチカットが入ることを意味する;

Tn(x1, t
∗
E)T̃n(x1, tE) :

(x1, t
∗
E) (x2, t

∗
E)

ψi

ψi+1

ここで、x > x2のブランチカットは Tn(x1, tE)と T̃n(x1, tE)の作用で相殺し無くなっている。
このように作用するツイスト演算子 Tn, T̃nが与えられたとすると、(5.27)の分配関数 Znはツ
イスト演算子の相関関数として以下のように表せる25。

ツイスト演算子による表式 [32, 33]:

TrV [ρnV ] =
〈
Tn(u1)T̃n(v1) · · · Tn(uN )T̃n(vN )

〉
R2

. (5.32)

また、ツイスト演算子 Tn, T̃nは primary演算子であることが分かっており、共形ウエイト
は以下で与えられる [34]。

hTn = hTn = c

24

(
n− 1

n

)
. (5.33)

ここで、cは中心電荷である。T̃nの共形ウエイトについても同様である。
また、少し余談をすると、今回ツイスト演算子を (5.29)のように作用する演算子として抽

象的に定義した。概念的にはよく用いられるのだが、一般にツイスト演算子の具体形を求める
のは難しい。唯一、2次元 free massless fermionの場合はツイスト演算子の具体形が知られて
いる [35]。

6 先行研究 1 : massless free fermion

前の章で述べたレプリカ法によって、場の量子論でいくつかのモデルでEEやEREが計算可能
になった。このセクションでは計算できるモデルの例として二次元でmassless free fermionを

25必ずしも正しくないが、経路積分の境界条件を以下のようにデルタ関数で書いて、デルタ関数に関する項がツ
イスト演算子を表しているイメージ。

1
Zn1

∫
ψ1(x∈V,+0)=ψ2(x∈V,−0)
ψ2(x∈V,+0)=ψ3(x∈V,−0)

...

Dψ1 · · · Dψn exp

[
−

n∑
i=1

I[ψi, ψ̄i]

]

= 1
Zn1

∫
Dψ1 · · · Dψn [δ (ψ1(x ∈ V,+0) − ψ2(x ∈ V,−0)) δ (ψ2(x ∈ V,+0) − ψ3(x ∈ V,−0)) · · · ]

exp

[
−

n∑
i=1

I[ψi, ψ̄i]

]
(5.31)
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...

ψ1

ψ2

ψn

...

...

ψ̃k

ψ̃k+1

図 9. 左の図は元々のレプリカ多様体 Σn,N を表す。適切に場を ψi → ψ̃k と再定義することでレプリ
カシートを分離することができる (右図)。この時、レプリカシート間の境界条件がなくなる代わりに場
ψ̃k は多価関数になっている (右図の矢印の方向に一周すると場 ψ̃k に位相がつく)。

x

V1 V2 VN· · ·
u1 v1 u2 v2 uN vN

: V

: V

図 10. 1+1次元時空において、領域 V がN 個のインターバルで構成れている様子。赤のラインは領域
V = V1 ∪ V2 ∪ · · · ∪ VN を表し、点線はその補集合 V を表す。ここで i番目のインターバルの両端の座
標を uj , vj と置く (Vj = [uj , vj ])。

扱おう。以下の 2つのステップを踏むことで EREや EEの厳密な結果を得ることができる。
• Step 1 : レプリカシートの分離
• Step 2 : ボソン/フェルミオン双対性を用いた解析

それでは一つずつ見ていこう。

6.1 Step 1 : レプリカシートの分離
相互作用のないモデルの場合、図 9に表されているようなレプリカシートの分離が行える。こ
こではこれがどういうことかについて説明する。簡単のため、2次元 Euclid時空を扱ってみよ
う。Euclidean作用 I[ψ, ψ]は以下で与えられる。

I[ψ, ψ] =
∫
R2
d2x ψ/∂ψ . (6.1)

また、領域 V は図 10のようにN 個の interval Vj = [uj , vj ], j = 1, 2, · · · , N で構成されている
とする；

V = [u1, v1] ∪ [u2, v2] ∪ · · · ∪ [uN , vN ] . (6.2)

レプリカ法を用いると、EREは二次元平面上の分配関数 Z1とレプリカ多様体 Σn,N 上の分配
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関数 Zn,N を用いて以下のように与えられる26。

Sn(V ) = 1
1− n

log
(
Zn,N
Zn1

)
= 1
Zn1

∫
Σn,N

DΨDΨ̄ e−I[Ψ,Ψ̄] , (6.3)

ここで、I[Ψ, Ψ̄]は以下で与えられる作用である。

I[Ψ, Ψ̄] =
n∑
i=1

I[ψi, ψ̄i] =
n∑
i=1

∫
R2
i

d2x ψi/∂ψi . (6.4)

積分範囲のR2
i は i番目のレプリカシートを表す。また、∫Σn,N は境界条件 (5.26)付きの経路積

分である。freeのモデルとはいえ、レプリカシート間の境界条件は厄介であり、そのまま経路
積分を実行するのは難しい。そこで以下のように T 行列 (5.26)(境界条件を表す行列)を対角化
してみよう。

U †TU = diag
{
ei k
n

2π
}

, k = −n− 1
2

, −n− 1
2

+ 1, · · · , n− 1
2

, (6.5)

ここで、U はある unitary行列。また、新しい場 ψ̃k, k = −n−1
2 , −n−1

2 + 1, · · · , n−1
2 を以下

で定義する。 
ψ̃−n−1

2...
ψ̃n−1

2

 := U †


ψ1
...
ψn

 . (6.6)

この新しい場 ψ̃kで見るとレプリカシート間の境界条件 (5.25)は以下のように書き換えられる。

ψ̃k(x+) = ei k
n

2π ψ̃k(x−) . (6.7)

ここで、x± := (x ∈ V, tE = ±0)とおいた。この時、新しい場 ψ̃kの境界条件は k番目のシート上
で完結していることに注意。この状態だとシート間の connectionが無く、取り扱いがしやすい
(図 9)。新しい場 ψ̃kは領域 V を cutとする多価関数となっているが、この多価性はBackground
ゲージ場に押し付けることができる27。

ψ̃k(x) = exp
(

i
∫ x

x0
dx′µAk,µ(x′)

)
ψ̃′
k(x) , (6.8)

ψ̃k(x) : 多価関数, ψ̃′
k(x) : 一価関数, x0 : 時空のある点

この式を、(6.4)に代入すると、作用は以下のように書き換えられる。

I[Ψ, Ψ̄] =
∑
k

∫
R2
k

d2x ψ̃′
k γ

µ (∂µ + iAk,µ) ψ̃′
k . (6.9)

26ここで、領域 V が N 個の interval で構成されていることを示すためレプリカ多様体 Σn に添字 N をつけ、
Σn,N を書いた。

27これはまさに量子力学で出てくる Aharanov-Bohm効果と同じである。
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uj vjVj

Cuj Cvj

図 11. 上の矢印は cycle Cuj , Cvj , j = 1, 2, · · · , N を表す。場 ψ̃k はこの図のように領域 Viに cutを持
つ多価関数であり、cycle Cuj

, Cvj
の方向に境界条件をもつ。

補足：
ちなみに、このようにレプリカシートの分離し、分配関数を (6.15)のように書けるのは free
の場合のみである。もう少し正確にいうと、Lagrangianが場の 2次の項 (ψ(#)ψのような
項)のみを含む場合に上手くいく。というのも、場の 2次の項の場合、(6.6)の変換で形が変
わらない； ∑

i

ψi(#)ψi = Ψ(#)Ψ = Ψ̃U(#)U †Ψ̃ = Ψ̃(#)Ψ̃ .

このように変換行列UはU †と打ち消し合って消えてくれる。一方、(ψψ)2や (ψγµψ)(ψγµψ)
のような項はこのように上手くはいかず、シート間の場がぐちゃぐちゃに絡み合う複雑な項
になる (U が残る)。こうなると解析が一気に煩雑になってしまう。ちなみに、このやり方で
計算している文献はある [36, 37]。ただし摂動論の範囲だ。

次に、具体的に backgroundゲージ場の形を求めておこう。図 11のような cycle Cui , Cvi
を考えると、(6.8)より以下の式を得る。

ψ̃k(x−) = exp
(

i
∮
Cui

dx′µAk,µ(x′)
)
ψ̃k(x+) ,

ψ̃k(x+) = exp
(

i
∮
Cvi

dx′µAk,µ(x′)
)
ψ̃k(x−) .

(6.10)

ψ̃′
k(x)の一価性：

一応確認だが、この式を得るには ψ̃′
k(x)の一価性が重要である。これは周回積分をする際に

仮想的に x0を考えるとわかりやすい。

ui

Vix+
x−

x0

P1

P2

ui

Vix+
x−

Cui
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左図のような経路を考えると、(6.8)より、

ψ̃k(x+) = exp
(

i
∫
P1
dx′µAk,µ(x′)

)
ψ̃′
k(x−) ,

ψ̃k(x−) = exp
(

i
∫
P2
dx′µAk,µ(x′)

)
ψ̃′
k(x+) ,

(6.11)

ここで、ψ̃′
k(x)は一価関数であるため、ψ̃′

k(x+) = ψ̃′
k(x−)としてよく、これらの式を割る

ことにより、(6.8)を得る (Cui = P2 − P1)。Cvi についても同様の議論が成り立つ。何気に
(6.8)を書いたがこういう地味に大事な事情に注意しよう。

(6.10)が (5.25)とmatchする条件は∮
Cui

dx′µAk,µ(x′) = −k
n

2π ,∮
Cvi

dx′µAk,µ(x′) = k

n
2π ,

(6.12)

であり、これを stokesの定理を用いて解くと、以下の解を得る。

ϵµν∂νAk,µ(x) = −2π k
n

N∑
j=1

[
δ(2) (x− uj)− δ(2) (x− vj)

]
. (6.13)

ここで、ϵxtE = 1とした。この backgoundゲージ場を用いると、k番目のレプリカシート上の
分配関数 Zkは以下のように書ける。

Zk =
〈

exp
(
−i
∫
d2x Ak,µ j

µ
k

)〉
R2
k

, jµk := ψ̃kγ
µψ̃k . (6.14)

また、レプリカシートは分離されているため、レプリカ多様体上の分配関数 Zn,N は以下のよ
うに独立な分配関数 Zkの積で表せる；

Zn,N =
k=(n−1)/2∏
k=−(n−1)/2

Zk . (6.15)

6.2 Step 2 : ボソン/フェルミオン双対性を用いた解析
Step1の議論より、「free fermionのEREを求める」という問題は「二次元平面上の background
ゲージ場が (6.13)のときの相関関数 (6.14)を計算する」という問題に帰着させることができた。
このパラグラフではボソン/フェルミオン双対性を用いてこのZkを計算しよう。ボソン/フェル
ミオン双対性の辞書 (2.58)より、jµk ⇔ 1

2π ϵ
µν∂νϕkの対応関係があるので、Zkは以下のように
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変形できる。

Zk =
〈

exp
(
− i

2π

∫
d2x Ak,µ ϵ

µν∂νϕk

)〉
,

=
〈

exp

 i
2π

∫
d2x (ϵµν∂νAk,µ)︸ ︷︷ ︸

(6.13)

ϕk


〉
,

=
〈

exp

−ik
n

N∑
j=1

[ϕk(uj)− ϕk(vj)]

〉 ,

=
〈

N∏
j=1

exp
(
−ik
n
ϕk(uj)

)
exp

(
ik
n
ϕk(uj)

)〉
. (6.16)

ここで 1行目から 2行目に行く時には部分積分を行い、2行目から 3行目には background gauge
場の具体的な configuration (6.13)を用いた。最後の式を見ると、vertex operatorの相関関数
のような形をしており、以下の公式が使えそうだ。

Vertex operatorの相関関数：

〈Vα1(x1) · · · Vαn(xn)〉 = δα1+···+αn,0

n∏
i<j

|xj − xi|2αiαj . (6.17)

ここで、Vαは vertex operatorは以下で与えられる。

Vα(x) := :exp (iαϕ(x)): =
∞∑
n=0

(iα)n

n!
:ϕ(x)n: . (6.18)

Proof. この公式を示すためには ϕ(x, t)のmode展開で zero modeを別にして扱う必要があ
る。以前導出したmode展開 (2.33)で zero modeの寄与を expliciteに書くと、

ϕ(x, t) = ϕ̂0 + 4ππ̂0t+Ax+
∫ ∞

−∞

dp√
2πωp

(
âpe

i(px−ωpt) + â†
pe

−i(px−ωpt)
)

π(x, t) = π̂0 −
i

4π

∫ ∞

−∞
dp

√
ωp
2π

(
âpe

i(px−ωpt) − â†
pe

−i(px−ωpt)
)
.

(6.19)

ここでAは定数である。(6.17)を示すには以下の式が重要な役割を果たす。〈
eiαϕ̂0

〉
= δα,0 . (6.20)
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これは以下のように示せる。正準量子化を行うと交換関係は以下の通り。

{
[ϕ(x, t), π(y, t)] = iδ(x− y) ,

(それ以外) = 0 ,
⇐⇒



[
ϕ̂0, π̂0

]
= i,[

âp, â
†
q

]
= 2πδ(p− q),

(それ以外) = 0

(6.21)

これより、π̂0と eiαϕ̂0 の交換関係は[
π̂0, e

iαϕ̂0
]

=
∑
n

(iα)n

n!

[
π̂0, ϕ̂

n
0

]
= αeiαϕ̂0 . (6.22)

ここで、
[
π̂0, ϕ̂

n
0

]
= −inϕ̂n−1

0 を用いた。これより、状態 |α〉 := eiαϕ̂0 |0〉は π̂0の固有値 αの
固有状態であることがわかる。

π̂0 |α〉 =
([
π̂0, e

iαϕ̂0
]

+ eiαϕ̂0 π̂0
)
|0〉 = α |α〉 (6.23)

ただし、真空状態 |0〉は並進不変と言う仮定を用いた (π̂0 |0〉 = 0)。π̂0は hermiteであるの
で、固有状態 |α〉は直交する。

〈α|β〉 = δα,β . (6.24)

導出を忘れた人は線形代数でよく使う式変形を思い出そう。

0 = 〈α|π̂0|β〉 − 〈α|π̂0|β〉 = 〈α| π̂0 |β〉︸ ︷︷ ︸
=β|β〉

−〈α| π̂0︸ ︷︷ ︸
=α〈α|

|β〉 = (α− β) 〈α|β〉 ,

if α 6= β ⇒ 〈α|β〉 = 0 .

これより、(6.20)が示せる。 〈
eiαϕ̂0

〉
= 〈0|α〉 = δα,0 = (6.20) (6.25)

さて、下準備が整ったので (6.17)の証明に入ろう。
まずは n = 2を考えてみよう。compact bosonの解析の際に用いた公式 :eA: :eB:=:eA+B:
e〈AB〉を用いると、

〈Vα1(x1)Vα2(x2)〉 =
〈
:eiα1ϕ(x1)+iα2ϕ(x2):

〉
e−α1α2〈ϕ(x1)ϕ(x2)〉

=
〈
ei(α+β)ϕ̂0

〉
|x1 − x2|2α1α2 . (6.26)

となる。ここで normal orderingは生成演算子を左に持っていくため、生成演算子を含む項
の VEVがゼロになることと、mode展開 (2.33)から示せる式 〈ϕ(x)ϕ(y)〉 = −2 log |x − y|
を用いた。最後に、(6.20)を用いると、

〈Vα1(x1)Vα2(x2)〉 = δα1+α2,0|x1 − x2|2α1α2 , (6.27)
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となり、(6.17)の n = 2の場合が示た。
次に、n = 3の場合を考えてみよう。同じテクニックを用いて以下のVEVを評価すると、

〈Vα1(x1) :Vα2(x2)Vα3(x3):〉 = 〈:exp (iα1ϕ(x1) + iα2ϕ(x2) + iα3ϕ(x3)):〉
× exp [−〈 α1ϕ(x1)(α2ϕ(x2) + α3ϕ(x3)) 〉]

=: exp
[
i (α1 + α2 + α3) ϕ̂0

]
:

× exp [−α1α2〈ϕ(x1)ϕ(x2)〉]× exp [−α1α3〈ϕ(x1)ϕ(x3)〉]
= δα1+α2+α3,0 · |x1 − x2|2α1α2 · |x1 − x3|2α1α3

= ((6.17)の右辺) .

一方、:O1(x)O2(y): = O1(x)O2(y)− 〈O1(x)O2(y)〉を用いると、

〈Vα1(x1) :Vα2(x2)Vα3(x3):〉 = 〈Vα1(x1) [Vα2(x2)Vα3(x3)− 〈Vα2(x2)Vα3(x3)〉] 〉
= 〈Vα1(x1)Vα2(x2)Vα3(x3)〉 − 〈Vα1(x1)〉︸ ︷︷ ︸

=0

· 〈Vα2(x2)Vα3(x3)〉

= 〈Vα1(x1)Vα2(x2)Vα3(x3)〉
= ((6.17)の左辺) . (6.28)

よって、(6.17)の n = 3の場合を示すことができた。同様の計算を繰り返すことで一般の n

で (6.17)が成り立つことがわかる。

この公式 (6.17)を (6.16)に用いると、

logZk = −2k
2

n2

 N∑
i,j

log |ui − vj | −
N∑
i<j

log |ui − uj | −
N∑
i<j

log |vi − vj | −N log ϵ

 . (6.29)

となる。kについての sumを実行すると、

logZn,N =
n−1

2∑
k=−n−1

2

logZk

= 1− n2

6n

 N∑
i,j

log |ui − vj | −
N∑
i<j

log |ui − uj | −
N∑
i<j

log |vi − vj | −N log ϵ

 .

ここで、∑n−1
2

k=−n−1
2
k2 = 1

12n(n2 − 1)を用いた。最後に得られた Zn,N を EREの公式 (5.22)に
代入すると最終的に以下の結果を得る (Z1 = 〈0|0〉 = 1)。
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Free massless fermionのERE[14]：

Sn = n+ 1
6n

∑
i,j

log |ui − vj | −
∑
i<j

log |ui − uj | −
∑
i<j

log |vi − vj | −N log ϵ

 . (6.30)

ここで ϵは UV cutoff lengthである。この結果は任意のインターバル数 n、レプリカシー
ト数N で EREが解析的に計算できる貴重な例である。あとの研究のセクションではこの free
fermionの結果を consistency check等に用いる。

(6.30)の導出の補足：
鋭い人は気づいたかもしれないが、(6.16)に出てくる項は vertex operatorと関数形が似て
いるが、normal ordering がない。教科書でも normal orderingの記号は省略されること
がよくあるのでうっかりするとミスをしてしまう。結論から言うとナイーブに (6.17)を代入
して計算すると UV finiteな項が出てきて、normal orderingがないことを考慮に入れると
UV cutoff依存性が出る。原論文でもこの議論は適当に誤魔化してやっているので、ここで
ちゃんと議論しておこう。
まずは eiαϕ(x)を以下のように級数展開の形に書いてみよう。

exp (iαϕ(x)) =
∞∑
n=0

(iα)n

n!
ϕ(x)n

=
∑
m

( 1
(2m+ 1)!

(iα)2m+1ϕ2m+1(x) + 1
(2m)!

(iα)2mϕ2m(x)
)
, (6.31)

次に、normal orderingとの関係を評価しよう。奇数冪の方は、

ϕ2m+1(x) = :ϕ2m+1(x): + 〈ϕ2m+1(x)〉︸ ︷︷ ︸
=0

= :ϕ2m+1(x): . (6.32)

ここで、このモデルでは奇数冪の一点関数はゼロであることを用いた (free compact boson
の作用は ϕ→ −ϕの対称性があるので、偶数冪しかノンゼロにならない、と考えても良い)。
偶数冪の方は

ϕ2m(x) = :ϕ2m(x): +〈ϕ2m(x)〉

= :ϕ2m(x): +(2m− 1)!!
(

log 1
ϵ2

)m
, (6.33)

となる (ϵ:UV cutoff length)。ここで、〈ϕ2m(x)〉は wickの定理で以下のように評価した。

〈ϕ2m(x)〉 = 〈ϕ(x)ϕ(x) · · ·ϕ(x)〉︸ ︷︷ ︸
m 対の縮約

+ · · ·

= 〈ϕ(x)ϕ(x)〉m · (2m− 1)!!︸ ︷︷ ︸
縮約の組み合わせ数

,
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既に計算した propagator(2.39)を用いると、〈ϕ(x)ϕ(x)〉 = log 1
ϵ2 より (x − x ∼ ϵ)、(6.33)

が示せる。こうして得られた結果 (6.32),(6.33)を eiαϕの級数展開 (6.31)に代入すると以下
のようになる。

eiαϕ(x) =
∞∑
n=0

(iα)n

n!
:ϕ(x)n:︸ ︷︷ ︸

=Vα(x)

+
∞∑
m=0

(2m− 1)!!
(2m)!︸ ︷︷ ︸
= 1

2mm!

(iα)2m
(

log 1
ϵ2

)m

= Vα(x) +
∞∑
m=0

1
m!

(
−α

2

2
log 1

ϵ2

)m

= Vα(x) + exp
[
−α

2

2
log 1

ϵ2

]
= Vα(x) + ϵα

2

= Vα(x)
(
1 +O

(
ϵα

2))
' Vα(x)O

(
exp

[
ϵα

2])
. (6.34)

よって、normal orderingのないことによる寄与が計算できたので、この結果を (6.16)に代
入し、Zkを計算すると、

logZk = log
〈

N∏
j=1
V− k

n
(uj)V k

n
(vj)

〉
+ 2N k2

n2O(log ϵ) .

これに vertex operatorの相関関数の公式 (6.17)を用いて計算すると、

logZk = −2k
2

n2

 N∑
i,j

log |ui − vj | −
N∑
i<j

log |ui − uj | −
N∑
i<j

log |vi − vj | −N O(log ϵ)

 .

(6.35)

となる。この議論でUV cutoff 依存性はO(log ϵ)であることがわかった。この具体的な関数
形は (6.35)の式を見て決める。周りの関数形が log(長さ)になっていることからこれに合わ
せてO(log ϵ)の部分が log ϵだと予想できる。これにより、(6.29)が導出できた。それ以降
の計算は同じである。
と、まあ、ガチでUV cutoff依存性を導出しようとするとこんなにもテクニカルになっ

てしまう。ここまでくると論文でみんな適当に誤魔化して書くのも納得。

7 先行研究 2 : 領域 V が単連結な場合のCFT2

2次元 CFTで領域 V が単連結な場合を考える (図 12)。この場合、共形対称性から EREの厳
密な結果が得られることが知られている [12]。結果から述べると以下のようになる。
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x
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u v

ω

図 12. 2次元 Euclid時空で領域 V が単連結な場合の図。赤いラインが領域 V を表し、点線が領域 V を
表す。ここで、領域 V の端点の x座標を u, vと置いた。また、このセクションではこの 2次元 Euclid
平面上の複素座標を ωと書くとする。

2次元CFTで領域 V が単連結な場合のERE:

Scn([u, v]) = c

6

(
1 + 1

n

)
log

(
v − u
ϵ

)
. (7.1)

ここで、cは考えている CFTの中心電荷。

このセクションでは共形対称性からどのようにしてこの結果を導けるかを解説しよう。今
回は以下の 2つの方法を扱う。

• レプリカ多様体 Σn,1をシリンダーにマップする方法 [31]

• ツイスト演算子の共形を用いる方法 [33]

それでは行こう。

7.1 レプリカ多様体 Σn,1をシリンダーにマップする方法
今回の場合にレプリカ法を用いると、EREはレプリカ多様体 Σn,1上の分配関数を用いて以下
のように書ける。

Sn(V ) = 1
1− n

log
(
Zn
Zn1

)
, (7.2)

Zn =

...

1

2

n

, Z1 = .
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適切に共形変換を施すことによって、このレプリカ多様体Σn,1はシリンダーにマップるすこと
ができる。そのためにまずは以下の共形変換 ω 7→ ζ を行う。

ζ = ω − u
ω − v

. (7.3)

この共形変換を行うと、領域 V の座標 u, vは 0, ∞にマップされる (以下の図を参照)。

V

ω

u v
ζ = ω−u

ω−v
V

ζ

0 ∞

さらに次の共形変換をすることで、二次元平面は以下のようにシリンダー変形される。

ξ = τ + iφ = l

2π
log ζ . (7.4)

ここで、lはシリンダーの周の長さである (φ ∼ φ+ l)。ここで、レプリカ法の考え方に則って、
二次元平面上で領域 V に切り込みを入れてみよう。そうすると φ = 0と φ = 2πを同一視でき
ないことに注意しよう (下の図を参照)。

ζ

0
∞

ψ

ψ′
ξ = τ + iφ = l

2π log ζ

ξ

l

ψ′

ψ

l
π log

(
v−u
ϵ

)τ

φ

ここで、上の図のように ζ平面において特異点である原点を半径 ϵ/(v−u)の円とみなして正則化し
た (ϵ:UV cutoffスケール)[38]。こうすると、ξの実部τの範囲はτ ∈ [− l

2π log
(
v−u
ϵ

)
, l

2π log
(
v−u
ϵ

)
]

となる。元々の 2次元空間で領域 V にカットが入っていなかった場合、ξ座標で見た時に赤い
ラインで表される部分は同一視されるのでシリンダーになる。しかし、今回は領域 V にカット
が入っているので、一般にシリンダーにはならないことに注意。
さて、この共形変換を用いるとレプリカ多様体Σn,1は以下のようになることが理解できる。
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...

1

2

n

ω 7→ ξ

τ

φ ∼ φ+ nl

l
π log

(
v−u
ϵ

)

ここで、n枚のシートが貼り合わされて一つのシリンダーができるので、シリンダーの周の長
さは nlになることに注意しよう。
レプリカ多様体 Σn,1 がシリンダーにマップできることが分かったので、後はこのシリン

ダー上の分配関数を求めれば良い。シリンダーで τ 方向に注目すると、分配関数は以下のよう
に書ける。

Zn = 〈0| e−βH |0〉 . (7.5)

ここで、Hは τ 方向の生成子 (ハミルトニアン)、βは τ 方向の長さ β = l
π log

(
v−u
ϵ

)である。H
は 2次元平面 C上の virasoro生成子 L0, L0と中心電荷 cを用いて以下のように書ける28。

H = 2π
nl

(
L0 + L0 −

c

12

)
. (7.6)

真空状態 |0〉は dilatationと回転で不変であること (L0 |0〉 = L0 |0〉 = 0)を用いると、(7.5)か
ら Znは以下のように評価できる。

logZn = c

6n
log

(
v − u
ϵ

)
. (7.7)

よって、これを (7.2)に代入すると、

Sn(V ) = c

6

(
1 + 1

n

)
log

(
v − u
ϵ

)
, (7.8)

を得る。このようにして (7.1)が導出できた。

7.2 ツイスト演算子の共形ウエイトを用いる方法
ツイスト演算子の共形ウエイトを既知とすると EREはすぐに求めることができる。ツイスト
演算子を用いた表式 (5.32)を用いて、共形ウエイト (5.33)を用いると、

TrV [ρnV ] =
〈
Tn(u)T̃n(v)

〉
R2
∝
(
v − u
ϵ

)−2(hTn+hTn )

=
(
v − u
ϵ

)− c
6 (n−1/n)

. (7.9)

28これはエネルギー運動量テンソルの変換性から示すことができる。詳しくは 3.1.3の説明を参照せよ。
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となる29。ここで、v → uの場合を考えUV cutoff ϵを導入した。これを用いると、

Sn(V ) = 1
1− n

log TrV [ρnV ] = c

6

(
1 + 1

n

)
log

(
v − u
ϵ

)
, (7.10)

とあっさり (7.1)が導けてしまう。
とはいえ、「ツイスト演算子の共形ウエイトが分かってりゃそりゃそうだろ」と思う人もい

るだろう。領域 V が単連結な場合はツイスト演算子の共形ウエイトの導出はそこまで煩雑では
ないので、ここで紹介しておこう。今回はレプリカ多様体Σn,1を一つの 2次元平面にマップす
るやり方を考える。前のセクションで行った共形変換 ω 7→ ζまでは同じであるが、今度は以下
の ζ 7→ zの共形変換を考えてみよう。

ζ 7→ z = ζ1/n . (7.11)

複素関数 ζ1/nの性質から ζ平面全体は z平面のうち 1/nに対応する30。これを用いるとレプリ
カ多様体 Σn,1は以下のようにうまく張り合わされ、z平面全体にマップできることがわかる。

...

1

2

n

ω 7→ ζ

ζ

0
∞

ψj

ψ′
j

⊗n
j=1

ζ 7→ z

z

1
2

· ·
·

n

この共形変換を用いて、j 番目のレプリカシート状のエネルギー運動量テンソル Tj(ω)の期待
値 〈Tj(ω)〉Σn,1 を計算してみよう。z平面は 2次元平面であり、dilatationと回転で不変である
ため、〈T (z)〉C = 0となることに注意すると、

〈Tj(ω)〉Σn,1 =
(
dz

dω

)2
〈T (z)− c

12
{ω; z}〉C = −

(
dz

dω

)2 c

12
{ω; z}

= c(1− 1/n2)
24

(v − u)2

(ω − u)2(ω − v)2 (7.12)

29ここで、物理的に意味のない定数は無視した
30z = rze

iθz , ζ = rζe
iθζ とおく。複素関数 ζ1/n のブランチカットを実軸の正の方向に取ると、z = rze

iθz =
r

1/n
ζ eiθζ/n となる。よって、0 ≤ θζ ≤ 2π は 0 ≤ θz ≤ 2π/nに対応し、z 平面の 1/n倍を占めることがわかる。
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ここでエネルギー運動量テンソルの変換性 (3.10)を用いた。一方、〈Tj(ω)〉Σn,1 をツイスト演算
子の言葉で書くと以下のように書ける。

〈Tj(ω)〉Σn,1 = 〈Tj(ω)Tn(u)T̃n(v)〉C
〈Tn(u)T̃n(v)〉C

. (7.13)

よって、先ほどの計算結果と合わせると、レプリカ多様体上のエネルギー運動量テンソルT (n)(ω) =∑n
j=1 Tj(ω)の相関関数は以下のように書ける。

〈T (n)(ω)Tn(u)T̃n(v)〉C
〈Tn(u)T̃n(v)〉C

= c(n2 − 1)
24n

(v − u)2

(ω − u)2(ω − v)2 (7.14)

となる。一方、3点関数に関する共形Ward恒等式より、以下の式も成り立つ。

〈T (n)(ω)Tn(u)T̃n(v)〉C =
(

1
ω − u

∂

∂u
+ hTn

(ω − u)2 + 1
ω − v

∂

∂v
+

hT̃n
(ω − v)2

)
〈Tn(u)T̃n(v)〉C .

(7.15)

この式に 〈Tn(u)T̃n(v)〉C = (v − u)−(hTn+h
T̃n

)を代入し、 〈T (n)(ω)Tn(u)T̃n(v)〉C
〈Tn(u)T̃n(v)〉C

を計算すると、

〈T (n)(ω)Tn(u)T̃n(v)〉C
〈Tn(u)T̃n(v)〉C

=
(v − u)

(
hTn(v − ω) + hT̃n

(ω − u)
)

(ω − u)2(ω − v)2 . (7.16)

となる。共形Ward恒等式で得られた結果 (7.16)と先ほど得た式 (7.14)を比較することで、共
形ウエイト (5.33)を得る。
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V V VV V

space

Euclidean
time

u1 v1 u2 v2

図 13. 2次元時空で領域 V が 2つの連結な領域で構成される場合の図。領域 V = [u1, v1] ∪ [u2, v2]は
赤色で示されており、単連結な 2つの領域の端点を u1, v1, u2, v2 とした。

Part III

相互作用を含む場の量子論のエンタングルメント
(研究)

このパートではいよいよ研究の話に入る。パート IIではレプリカ法と先行研究をいくつかレ
ビューしたが、先行研究では基本的に自由場の理論しか扱えていない。これはレプリカ多様体
上の分配関数を求めることは技術的に困難であることに起因するが、パート Iでレビューした
ボソン/フェルミオン双対性はこの問題に対して有効なアプローチである。我々の研究ではこの
アイデアを用い、実際に相互作用のある場の量子論モデルでエンタングルメントを計算できる
例を示した。まずセクション 8では具体的な問題設定を述べる。その後エンタングルメントを
解析する上で非常に重要な共形変換をセクション 9で解説し、セクション 10では我々が得た結
果について議論する。最後にセクション 11で本研究のまとめを述べる。

8 モデルのセッティング

我々は相互作用のある場の量子論のモデルとしてmassless Thirring model [26]を扱う。Euclidean
作用は以下で与えられる。

I[ψ, ψ, λ] =
∫
R2

d2x

[
iψ /∂ ψ + π

2
λ (ψ γµ ψ)(ψ γµ ψ)

]
, (8.1)

ここで、ψはDirac fermion、λはThirring couplingである。このモデルは c = 1のCFTであ
ることが知られている。領域 V が単連結の場合は CFTのエンタングルメントの公式 (7.1)が
すでに知られているので、我々は次に複雑なセッテイングとして図 13のように領域 V が 2つ
の単連結な領域で構成される場合を扱ってみよう。我々はこの領域 V に関する n = 2の場合の
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EREを求めることを目標する。

目標： S2(V ) = − log TrV
[
ρ2
V

]
,

領域 V は図 13で与えられる。

この系に対してセクション IIでレビューしたレプリカ法を適用してみよう。縮約密度行列 ρV
は以下のように経路積分表示できる。

〈ψi,V | ρV |ψj,V 〉 =
ψj,V ψj,V

−ψi,V −ψi,V

tE = +0
tE = −0 (8.2)

目標はn = 2のERE S2(V )なので、2枚のレプリカシートを用意し適切にgluingするとThirring
modelの ERE S2(V )は以下のように書ける。

S2(V, λ) = − log
[
Z2,2

(Z1)2

]
= − log

〈
T2(u1)T̃2(v1)T2(u2)T̃2(v2)

〉
. (8.3)

ここで、Z2,2はレプリカ多様体 Σ2,2上のmassless Thirring modelの分配関数である。

Z2,2(V, λ) =
∫

Σ2,2
DΨDΨ e−I[Ψ,Ψ,λ]

=

−ψ′
V

ψV

ψV

ψ′
V

−ψ′
V

ψV

ψV

ψ′
V

, (8.4)

分配関数 Z2,2はそもまま計算することが困難であるため、これから共形変換を用いて扱いやす
く変形していく。

9 共形変換
レプリカ法を用いると、「EREを求める問題」は「レプリカ多様体上の分配関数 (8.4)を求める
問題」に帰着できた。我々はこの分配関数をボソン/フェルミオン双対性を用いて求めたいとこ
ろだが、レプリカ多様体Σ2,2が複雑でありそのまま扱うことは難しい。そこで、ある共形変換
をして分配関数 (8.4)がトーラスの分配関数に帰着させることを考えよう。この共形変換は少し
複雑なので二つのステップ (ツイスト演算子の変換性の計算、トーラス分配関数を用いた計算)
に分けて考えよう。
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9.1 ツイスト演算子の変換性
今考えているレプリカ多様体Σ2,2上の座標を zとする。以下の共形変換 z → ωをすることで、
領域 V の端点 (u1, v1, u2, v2)がそれぞれ (0, x, 1,∞)にマップすることができる。

w(z) = (v2 − u2)(z − u1)
(u2 − u1)(v2 − z)

, (9.1)

共形変換におけるプライマリ場の変換性 (3.9)と、ツイスト演算子の共形ウエイトの値 (5.33)
を用いると、4点関数

〈
T2(u1)T̃2(v1)T2(u2)T̃2(v2)

〉
は以下のように変換する。

〈
T2(u1)T̃2(v1)T2(u2)T̃2(v2)

〉
=
(

x

(v1 − u1)(v2 − u2)

) 1
4 〈
T2(0)T2(x)T̃2(1)T̃2(∞)

〉
, (9.2)

ここで、xは領域 V1, V2の cross ratioであり、以下で定義される。

x = (v1 − u1)(v2 − u2)
(u2 − u1)(v2 − v1)

. (9.3)

また、(9.2)の導出では無限遠点におけるプライマリ場の定義O(∞) := limΛ→∞
1

Λ2∆O(Λ)を用
いた (∆はプライマリ場Oの共形次元)。導出は以下のオレンジレフトバーに回す。

(9.2)の導出の詳細 :

Proof. 共形変換 (9.1)の形から、z = u1, v1, u2, v2が ω = 0, x, 1,∞に対応する。また、共形
変換におけるプライマリ場の変換性より、ツイスト演算子は以下のように変換する。

T2(z) =
(
dω

dz

)h (dω
dz

)h
T2(ω), (9.4)

ここで、ツイスト演算子の共形ウエイトの値を hT̃ ′
2n

= hT̃ ′
2n

= hと略記した。また微分 dω
dz

は計算すると以下の通り。
dω

dz
= (vb − ua)(vb − ub)

(ub − ua)(vb − z)2 , (9.5)

ここで注意しなければいけないことは、微分 dω
dz は z = vbで発散する。よって、z = vbだけ

は特別に注意して扱おう。z = vbに対応する点は ω =∞であり、無限遠点でのツイスト演
算子の定義より

T̃ ′2n(∞) ≡ lim
|ω|→∞

1
|ω|2∆ T̃

′2n(|ω|)

= lim
Λ→∞

Λ4h T̃ ′2n(Λ), (9.6)

となる。また、ω平面上の無限大パラメーターΛと z平面上の無限小パラメーター εは以下
で関係している。

Λ = (vb − ub)(vb − ua)
(ub − ua)

· 1
ε
, Λ� 1 , ε� 1 . (9.7)
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AP
∼

A

A

図 14. レプリカ多様体 Σ2,2は共形変換によってトーラスにマップできる。レプリカ多様体 Σ2,2上に黄
緑色、オレンジ色で示されているサイクルはトーラスの非自明な二つのサイクルに対応している。レプ
リカ多様体上の黄緑のサイクルに沿って場は周期的 (P)であるが、共形変換をするとトーラス上で反周
期的 (A)に境界条件が変わる。

z = vbでの微分は発散するので z = vb − εで評価しよう。すると、4点関数の共形変換に出
てくるファクターは

dω

dz

∣∣∣∣
ua

· dω
dz

∣∣∣∣
va

· dω
dz

∣∣∣∣
ub

· dω
dz

∣∣∣∣
vb−ε

=
( (ua − vb)x

(va − ua)(ub − ua)ε

)2

=
(

x

(va − ua)(vb − ub)

)2
λ2 , (9.8)

と計算される。これより、4点関数の変換性は〈
T ′

2n(ua)T ′
2n(va)T̃ ′2n(ub)T̃ ′2n(vb)

〉
= lim

ε→0
(λ→∞)

(
dω

dz

∣∣∣∣
ua

· dω
dz

∣∣∣∣
va

· dω
dz

∣∣∣∣
ub

· dω
dz

∣∣∣∣
vb−ε

)h
·
(
dω̄

dz̄

∣∣∣∣
ua

· dω̄
dz̄

∣∣∣∣
va

· dω̄
dz̄

∣∣∣∣
ub

· dω̄
dz̄

∣∣∣∣
vb−ε

)h

×
〈
T ′

2n(0)T ′
2n(x)T̃ ′2n(1)T̃ ′2n(λ)

〉
,

=
(

x

(va − ua)(vb − ub)

) 1
4 〈
T ′

2n(0)T ′
2n(x)T̃ ′2n(1)T̃ ′2n(∞)

〉
. (9.9)

となり、(9.2)を得る。ここで、n = 2, c = 1の場合の共形ウエイトの値 h = 1/16を用いた
((5.33)参照)。

9.2 トーラス分配関数へのマップ
レプリカ多様体 Σ2,2は図 14のように共形変換でトーラスにマップすることができる。この事
実は数学的に保証されているが、まずはイメージを掴むためレプリカ多様体Σ2,2のトポロジー
的にトーラスと同じであるということを理解しよう。まずはレプリカシート 1枚が連続変形に
よってシリンダーになることを見てみよう。煩雑さを避けるため領域 V1, V2上の場をそれぞれ
|a〉 = |ψV (x ∈ V1)〉 , |b〉 = |ψV (x ∈ V2)〉と略記するとする。また、説明の都合上領域 V1, V2を

– 83 –



それぞれ青色、赤色で示すとする。この記法を用いると縮約密度行列 〈a| 〈b| ρV |a′〉 |b′〉(レプリ
カシート 1枚分)は以下のように連続変形される;

〈a| 〈b| ρV |a′〉 |b′〉 =
a′ b′

−a −b
sheet1

∼
a′

−a

b′

−b
,

∼
a′

−a

b′

−b
∼

a′

−a

b′

−b

∼

a′

−a

−b

b′

(9.10)

同様に二つ目の sheetに関しても以下のように変形できる。

〈−a′| 〈−b′| ρV |a〉 |b〉 =
a b

a′ b′

sheet 2

∼
a

a′

b

b′

∼

b

b′

a′

a

(9.11)
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(9.10),(9.11)の変形を用いると TrV
[
ρ2
V

]は以下のように変形できる。
TrV

[
ρ2
V

]
=
∑
a,a′

∑
b,b′

〈−a′| 〈−b′| ρV |a〉 |b〉︸ ︷︷ ︸
sheet2

〈a| 〈b| ρV |a′〉 |b′〉︸ ︷︷ ︸
sheet1

=
∑
a,a′

∑
b,b′

a′ b′

−a −b
sheet1

a b

a′ b′

sheet2

=


AP a′

−a

a

a′

b′

−b

b

b′

sheet1

sheet2



∼
∑
a,a′

∑
b,b′

a′

−a

−b

b′

b

b′

a′

a

=
∑
a,a′

∑
b,b′

−b b′ a −a′ glue a′ a b b′

glue

=

A

A

(9.12)
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よって、直感的にレプリカ多様体Σ2,2がトーラスに変形できることがわかった。ここで、gluing
の時の境界条件により、オレンジのサイクルはAnti-periodicになることに注意せよ。また、黄
緑のサイクルに関してはレプリカ多様体Σ2,2上では Periodicであるが、トーラス上ではAnti-
periodicになる。これは 2次元平面からシリンダーに共形変換するときにフェルミオ場の変換
性から周期性が変わるのと同じ理由である。
それでは今度は具体的にこの共形変換を定式化してみよう。トーラス上の複素座標を ζ と

すると、ω → ζ の共形変換は以下のように与えられる [39]。

ω(ζ) = ℘(ζ)− e3
e1 − e3

,

e1 = ℘(1/2), e2 = ℘(τ/2), e3 = ℘((τ + 1)/2),
(9.13)

ここで、℘(ζ)は以下で定義されるWeierstrassのペー関数である。

℘(ζ) ≡ 1
ζ2 +

∑
(n,m)6=(0,0)

[ 1
(ζ +m+ nτ)2 −

1
(m+ nτ)2

]
, (9.14)

この関数に関する公式は付録Cにまとめた。この共形変換を用いると、レプリカ多様体上の座
標 ω = 0, x, 1,∞はトーラス座標では ζ = τ+1

2 , τ
2 ,

1
2 , 0に対応する;

ω

(
τ + 1

2

)
= 0 , ω

(
τ

2

)
= x , ω

(1
2

)
= 1 , ω (0) =∞, (9.15)

ここで、cross ratio xとトーラスのmoduli τ の関係は以下の通り31。

x =
(
ϑ2(τ)
ϑ3(τ)

)4
, 1− x =

(
ϑ4(τ)
ϑ3(τ)

)4
, (9.16)

図 15にレプリカ多様体上の座標 ωとトーラス上の座標 ζ の対応関係を示した。この図から分
かるように、レプリカ多様体Σ2,2上の 2つのサイクルはトーラス上の非自明な 2つのサイクル
に対応している。オレンジ色のサイクルは gluingの際の境界条件より周期性はAnti-periodicで
あることがわかる。さらに、黄緑色のサイクルに関してもフェルミオン場の変換性を加味する
とAnti-periodicであることがわかる;

ψ(ζ) =
(
dω

dζ

)1/2
ψ(ω) ,

=
√

2(e1 − e3)1/4 [ω(ω − x)(ω − 1)]1/4 ψ(ω) ,

ここで、ペー関数の微分公式 (C.6)を用いた。式に現れる ω1/4(ω− x)1/4のファクターにより、
黄緑のサイクルを一周すると (−1)のファクターを受ける。よって、フェルミオン場の周期性は
Anti-periodicとなる。
この共形変換の具体形 (9.13)を用いると、ツイスト演算子の相関関数

〈
T2(0)T2(x)T̃2(1)T̃2(∞)

〉
はトーラス上の分配関数 ZFを用いて以下のように書ける [40]。〈

T2(0)T2(x)T̃2(1)T̃2(∞)
〉

= (28x(1− x))−c/12ZF[AA, λ, iℓ] , (9.17)

31xを e1, e2, e3 を用いて表すと x = (e2 − e3)/(e1 − e3)となる。
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−b b′

b b′

図 15. 共形変換 (9.13)の座標の対応関係。ω = 0, x, 1,∞はトーラス上では ζ = τ+1
2 , τ

2 ,
1
2 , 0に対応し、

レプリカ多様体上に示されている 2つのサイクル (黄緑、オレンジ)はトーラス上の非自明な 2つのサイ
クルに対応している。

ここで、c は中心電荷 (導出は結構テクニカルなので後のオレンジバーで述べる)。massless
Thirring modelの中心電荷は c = 1なので、(9.2)と (9.17)より、以下の結果を得る。
〈
T2(u1)T̃2(v1)T2(u2)T̃2(v2)

〉
=
(
v1 − u1

ϵ
· v2 − u2

ϵ

)− 1
4
· x

1
4
(
28 x (1− x)

)− 1
12 ZF[AA, λ, i ℓ] ,

(9.18)

ただし、ui ∼ viに対応するUV cutoff scale ϵを導入した。ERE S2(V, λ)のツイスト演算子を
用いた表式 (8.3)より、これの logを取れば ERE S2(V, λ)が求められる。このように EREを
トーラス分配関数を用いて表すことができた。

Proof. (9.17)の導出:
ツイスト演算子の相関関数とトーラス分配関数の関係を導出する方法の一つに、エネルギー
運動量テンソルの期待値を用いた方法がある [41]。レプリカ多様体 Σ2,2上のエネルギー運
動量テンソルを T (ω)とすると、トーラス上のエネルギー運動量テンソル T (ζ)との変換性
は以下の通り。

T (ω) =
(
dω

dζ

)−2 (
T (ζ)− c

12
{ω; ζ}

)
. (9.19)

ここで、共形変換の具体形 (9.13)を用いて dω
dζ と Schwarz微分を計算すると、

dω

dζ
= 2(e1 − e3)1/2 [ω(ω − x)(ω − 1)]1/2 ,

{ω; ζ} = 12
(
℘(ζ)− 9

8
(℘2 + e)2

(℘− e1)(℘− e2)(℘− e3)

)
,

(9.20)
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となる。今、ω → xの場合を考えてみよう。この場合、以下の式が示せる。

lim
ω→x

(
dω

dζ

)−2
' 1
ω − x

· 1
4(e3 − e1)x(1− x)

,

lim
ω→x

(
dω

dζ

)−2 1
12
{ω; ζ} ' 1

ω − x
· 1− 2x

48x(1− x)

(9.21)

(9.19)の両辺の期待値を取って、ω ' xにおけるエネルギー運動量テンソルの期待値の振る
舞いを計算すると、〈

T (ω)T2(0)T̃2(x)T2(1)T̃2(∞)
〉

〈
T2(0)T̃2(x)T2(1)T̃2(∞)

〉 ,

= 2 〈T (ω)〉Σ2,2
,

= 2
(
dω

dζ

)−2 (
〈T (ζ)〉T −

c

12
{ω; ζ}

)
,

' 1
ω − x

·
( 〈T (ζ)〉T

2(e3 − e1)x(1− x)
− c

24
1− 2x
x(1− x)

)
+O(1) , (9.22)

となる。ここで、トーラス上のエネルギー運動量テンソルの期待値が出てきたが、これは
トーラス分配関数 ZTを用いて以下のように書き下せる。

〈T (ζ)〉T = 1
ZT

Tr
[
T (ζ) qL0−c24qL0−c/24

]
,

= 1
ZT

Tr
[
(2πi)2(L0 −

c

24
) qL0−c24qL0−c/24

]
,

= 2πi∂τ logZT . (9.23)

ここで、エネルギー運動量テンソルの変換式 T (ζ) =
(
dz′

dζ

)2 (
T (z′)− c

12{ζ; z
′}
)
( z′(= e2πiζ :

ある二次元平面上の複素座標。)とトレースの中で Ln, n 6= 0が寄与しないことを用いた。
この式 (9.23)を用いると、(9.22)は以下のように書ける。〈

T (ω)T2(0)T̃2(x)T2(1)T̃2(∞)
〉

〈
T2(0)T̃2(x)T2(1)T̃2(∞)

〉 ,

' 1
ω − x

·
( 2πi∂τ logZT

2(e3 − e1)x(1− x)
− c

24
∂x [log(x(1− x))]

)
,

= 1
ω − x

· ∂x log
[
ZT(x(1− x))− c

12
]
, (9.24)

ここで、2行目から 3行目にかけて恒等式:2(e3 − e1)x(1 − x) = −π2xϑ4
4(τ) = 2πidxdτ と

d
dx log [x(1− x)] = 1−2x

x(1−x) を用いた。さて、5点関数
〈
T (ω)T2(u1)T̃2(v1)T2(u2)T̃2(v2)

〉
の共
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形ワード恒等式で 1
ω−x に比例する項だけに注目すると、〈

T (ω)T2(0)T̃2(x)T2(1)T̃2(∞)
〉

〈
T2(0)T̃2(x)T2(1)T̃2(∞)

〉 = 1
ω − x

1〈
T2(0)T̃2(x)T2(1)T̃2(∞)

〉∂x 〈T2(0)T̃2(x)T2(1)T̃2(∞)
〉

+ · · · ,

= 1
ω − x

∂x log
〈
T2(0)T̃2(x)T2(1)T̃2(∞)

〉
+ · · · , (9.25)

となる。(9.24)と (9.25)は定数項を除き一致すべきなので最終的に〈
T2(0)T̃2(x)T2(1)T̃2(∞)

〉
= c0 ZT(x(1− x))− c

12 . (9.26)

を得る。ここで、c0はこの議論では決定できない定数項である。EREの解析ではスキーム
に依存する定数項が出るため、このような定数に物理的に意味はない。今回は free fermion
の結果を合わせるため c0 = 2−2/3とした。

10 結果の解析
前のセクションでは共形変換を施すことで分配関数Z2,2をトーラスの分配関数ZF[AA, λ, i ℓ]を
用いて具体的に書くことができた。さらにセクション Iの議論により、このmassless Thirring
modelの分配関数 ZF[AA, λ, i ℓ]はすでに厳密に計算されている ((3.103)を見よ)。よって我々
は厳密な解析結果を得ることができた。ここでは得られた結果について議論しよう。

10.1 EREの解析的性質
ここでは得られた EREの結果 (10.1)の解析的な性質を調べる。Massless Thirring modelの分
配関数の解析結果 (3.103)を (??)に代入すると以下の結果を得る。

massless Thirring modelのERE S2(V )の厳密結果：

S2(V, λ) = S2(V, 0)− 1
2

log

 1
2ϑ4

3(i ℓ)

4∑
j=2

Ξj(λ, i ℓ)

 , (10.1)

Ξj(λ, i ℓ) := ϑ2
j (i ℓ (1 + λ)) ϑ2

j

( i ℓ
1 + λ

)
. (10.2)

ここで S2(V, 0)は自由場からの寄与であり以下で与えられる。

S2(V, 0) = 1
4

log
(
v1 − u1

ϵ
· v2 − u2

ϵ

)
+ 1

4
log(1− x) . (10.3)

ここで S2(V, 0)の導出には theta関数の公式B.3,B.4を用いた。この結果について特筆すべ
きことは、今回ボソン/フェルミオン双対性を用いて計算された結果はすでに知られている free
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fermionの結果と consistentであることである。実際、(6.30)で n = 2, N = 2とすると我々の
結果 (10.3)と完全に一致する;

先行研究 [14]の計算結果
massless free fermionの結果 (6.30)で (n,N) = (2, 2)を代入すると以下の結果を得る。

SFree
2 (V ) = 1

4
log

(
v1 − u1

ϵ
· v2 − u2

ϵ

)
+ 1

4
log(1− x) . (10.4)

セクション 6で解説したように、massless free fermionの先行研究 [14]では我々と全く異
なる方法で計算されているのでこれは非自明な consistency checkである。
また、今後のために EREの自由場からの差分∆S2を定義しておく。

∆S2(x, λ) := S2(V, λ)− S2(V, 0)

= −1
2

log

 1
2ϑ4

3(i ℓ)

4∑
j=2

Ξj(λ, i ℓ)

 . (10.5)

ここで、EREの差分∆S2は本質的に cross ratio xと結合定数 λの関数であるため∆S2(x, λ)
と書いた。cross ratio xの関数である理由は、(10.5)から∆S2はトーラスのmoduli ℓの関数で
あり、ℓは cross ratio xと一対一の対応があるためである ((9.16)を参照)。
さらに解析結果から、差分∆S2(x, λ)は以下の性質を満たすことがわかる。

modular S 不変性 : ∆S2(x, λ) = ∆S2(1− x, λ) , (10.6)

T-duality : ∆S2(x, λ) = ∆S2(x, λdual) , λdual = − λ

λ+ 1
. (10.7)

この性質はトーラス分配関数のmodular S 変換 ℓ→ 1/ℓの不変性に起因している。theta関数
の性質 (B.7)より (10.5)は不変であり、(9.16)から ℓ→ 1/ℓは x→ 1−xを意味する。この性質
(10.6)より、差分∆S2(x, λ)は x = 1/2で極小値または極大値を取ることがわかった。T-duality
に関してはセクション 3.6で述べた通り、compact bosonのT-dualityから派生したものである。
さらに、λ, xが特別な値のとき EREはより簡単な形になることがわかった。ここではい

くつかの例を列挙しよう。
• λ = 1⇐⇒ λ = −1/2 : この場合、差分∆S2(x, λ)は xの関数として expliciteに書き下す
ことができる;

∆S2(x, λ = 1) = log 2− log
[
1 + (1− x)

1
4 + x

1
4 − (x(1− x))

1
4
]
. (10.8)

• λ→ −1 + δ ⇐⇒ λ→∞ : この時系は不安定になり差分∆S2(x, λ)は log発散を示す;

lim
δ→0+

∆S2(x,−1 + δ) = lim
δ→0+

1
2

log δ = −∞ . (10.9)
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• x→ 0⇐⇒ x→ 1 : cross-ratio xが 0または 1に近づくとき、任意の結合定数 λで ERE
S2(V, λ)は自由場での値 S2(V, 0)に近づく;

lim
x→0

∆S2(x, λ) = 0 . (10.10)

• |λ| � 1 : 結合定数 λが非常に小さい時、厳密結果 (10.1)は λを λでテイラー展開してみ
よう。少々面倒な計算の後以下の結果を得る32;

∆S2(x, λ) = λ2 ℓ2

2ϑ4
3(i ℓ)

4∑
j=2

ϑ2
j (i ℓ)×

[
(∂ℓϑj(i ℓ))2 − ϑj(i ℓ) ∂2

ℓϑj(i ℓ)−
ϑj(i ℓ) ∂ℓϑj(i ℓ)

ℓ

]
+O(λ3) .

(10.11)

ここで、差分∆S2(x, λ)の級数展開は λの二次から始まることに注意。これは以下のよう
に理解できる。λが小さい時、T-dualityは (10.7)は λdual ' −λと近似できる。つまり、
この場合に差分∆S2(x, λ)の T-dualityはこのようになる。

∆S2(x, λ) = ∆S2(x,−λ) , |λ| � 1 , (10.12)

この性質のため差分∆S2(x, λ)の級数展開に λの一次の項は許されず、二次から始まる。

10.2 MRIの解析的性質
今度は相互 Rényi情報量 (MRI)を解析してみよう。MRIの定義 (4.46)から (n,N) = (2, 2)の
場合は

I2(V1, V2) = S2(V1) + S2(V2)− S2(V1 ∪ V2) , (10.13)

となる。ここで、V1, V2 はそれぞれ単連結な領域を表す (V1 = [u1, v1], V2 = [u2, v2])。第 1
項、第 2項は領域 V が単連結な場合の ERE((n,N) = (2, 1))であり、すでに CFTの議論か
ら結果がわかっている (7.1)。さらに、第 3項は領域 V が 2つの単連結な領域からなる場合の
ERE((n,N) = (2, 2))であるが今やボソン/フェルミオン双対性を用いて計算した結果 (10.1)
がある。よって、(7.1)と (10.1)を (10.13)に代入することでmassless Thirring modelのMRI
I2(V1, V2, λ)を得る。

massless Thirrig modelのMRI I2(V )の厳密結果：

I2(x, λ) = I2(x, 0) + 1
2

log

 1
2ϑ4

3(i ℓ)

4∑
j=2

Ξj(λ, i ℓ)

 , (10.14)

ここで、I2(x, 0)は自由場の寄与であり以下で与えられる;

I2(x, 0) = −1
4

log(1− x) . (10.15)

32これは methematicaを使うことを勧める。

– 91 –



0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.0 0.2 0.4 0.6 0.8 1.0
-0.08

-0.06

-0.04

-0.02

0.00

図 16. ERE の自由場からの差分 ∆S2 の cross ratio 依存性。 結合定数 λ の範囲は λ =
0, 0.1, 0.2, 0.3, 0.4, 0.5(左図)と λ = 1, 1.2, 1.4, 1.6, 1.8, 2(右図)。

MRIは EREから UV発散項をちょうど相殺し、有限な値になっている。また、今回も解
析結果からMRIは cross ratio xの関数であることから I2(x, λ)と表記した。さらに、今回も
解析的にわかることを議論しておく。結合定数 λが 1−

√
3 < λ < 1 +

√
3の範囲にある場合、

cross-ratio xが小さい極限を取ると (10.14)は以下のように近似できる;

I2(x, λ) ∼ 4
(
x

16

) 1
2 (1+λ+ 1

1+λ)
≥ 0 , (10.16)

MRIの x→ 0の極限は先行研究で関数形が予想されている [18, 式 (4.26)]。今回我々が得た結果
(10.16)は先行研究の結果と完全に一致しており、consistentな結果である。さらに、今回得ら
れた漸近形 (10.16)より、massless Thirring modelのMRIは正であることがわかる。これは実
は非自明な結果である。というのも、相互情報量は必ず正であることがエンタングルメントエ
ントロピーの subaditivityから証明されている (4.35)。しかし、相互 Rényi情報量の場合は必
ずしも正とは限らない。今回の解析で少なくともmassless Thirring modelの場合は相互Rényi
情報量が正であることが示せたということである。

10.3 EREとMRIのパラメーター依存性
先ほどはmassless Thirring modelの EREの厳密結果から解析的な性質を調べた。ここでは物
理的な振る舞いをより直感的に理解するために EREとMRIのパラメーター依存性を調べてみ
よう。

10.3.1 cross ratio 依存性
それでは EREとMRIの厳密結果 (10.1),(10.14)を用いて cross ratio依存性を調べてみよう。
図 16に差分∆S2を横軸を cross ratioxにしてプロットした。プロットを見るとわかるように、
図 16は左図、右図ともに左右対称になっており、これはmodular S 変換 x→ 1−xでの不変性
(10.6)から従う結果である。さらに、プロットから結合定数 λに依らず x = 0, 1で∆S2 = 0に
なっていることが読み取れる。この現象について物理的意味を考えてみよう。今回はセクショ
ン 7でレビューした先行研究が中心的な役割を果たすのでここで再度書いておく;
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図 17. 長さ ℓ1, ℓ2, ℓ3 の定義。赤いラインは領域 V を表し、2つの領域 V1, V2 の端点の空間座標を u1,
v1, u2, v2 とした。

ℓ1 ℓ2

≈

x = 0
(ℓ3 =∞)

ℓ1 ℓ2

x = 1
2

ℓ1 + ℓ2

x = 1
(ℓ3 = 0)

図 18. cross-ratio x と 2つの単連結な領域 V1, V2 の対応関係。この図ではそれぞれのインターバルの
長さ ℓ1, ℓ2は固定されているものとする。この時、x→ 0は ℓ3 →∞を意味し、2つの領域 V1, V2は無
限に離れている場合に対応する (左図)。この場合は領域 V1, V2 は完全に孤立し、V = V1 ∪ V2 の ERE
S2(V1 ∪ V2)は V1, V2の ERES2(V1), S2(V2)和になる (10.22)。一方、x→ 1は ℓ3 → 0を意味するため
2つの領域 V1, V2 は合併し、長さ ℓ1 + ℓ2 のインターバルになっている状況に対応する (右図)。この場
合は領域 V が単連結の結果に一致する (10.24)。Thirring 相互作用による寄与が最大値 (または最小値)
となるのはその中間 x = 1/2の状態である (中央図)。

先行研究 [12]の解析結果
扱っているモデルがCFTであり、領域 V は単連結とする (V = [u1, v1])。この時、共形対称性
から n = 2の場合の EREは以下の形になる33。

Sc2([u, v]) = c

4
log

(
v − u
ϵ

)
. (10.17)

ここで cは中心電荷である。

massless free (Dirac) fermionは c = 1の CFTになっているが、massless Thirring model
も同様に c = 1のCFTである。この結果 (10.17)の理論に依存するものは中心電荷だけなので、
領域 V が 1-intervalの場合、massless Thirring modelの EREはmassless free fermionと違い
が出ない。このことを念頭に以下のように考えてみよう。まず、(9.3)で定義される cross ratio
x を物理的な長さで書き直す;

x = ℓ1ℓ2
(ℓ1 + ℓ3)(ℓ2 + ℓ3)

, (10.18)

ここで、ℓ1, ℓ2, ℓ3は領域 V1, V2の長さとその間の距離である (図 17);

ℓ1 ≡ v1 − u1 , ℓ2 ≡ v2 − u2 , ℓ3 ≡ u2 − v1 . (10.19)
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この表式では x→ 0 の極限を領域 V1, V2の長さの極限として以下のように解釈できる;

x→ 0 ⇐⇒ ℓ1
ℓ3
→ 0 または ℓ2

ℓ3
→ 0 . (10.20)

例えば 2つの極限 ℓ1 → 0,と ℓ3 →∞に注目してみよう。
• ℓ1 → 0 :
ℓ1 → 0の極限では領域 V1 = [u1, v1]は消滅するため、領域 V は単連結な領域 [u2, v2]に
なる。この時、EREは領域 V が単連結な場合の結果 (10.17)になる。

S2(V, λ) −→ Sc=1
2 ([u2, v2]) = 1

4
log

(
ℓ2
ϵ

)
, (10.21)

massless Thirring modelとmassless free fermionは中心電荷が同じであるため、massless
Thirring modelの EREは free fermionに一致する。よって、差分∆S2が ℓ1 → 0の極限
でゼロになる理由が理解できた。

• ℓ3 →∞ :
ℓ3 → ∞の極限の場合、2つの領域 V1, V2 は無限に離れるため領域 V1, V2 の間の相関
は無くなる。そのため、領域 V = V1 ∪ V2 の ERE((n,N) = (2, 2)) は領域 V1, V2 の
ERE((n,N) = (2, 1))の和になる;

S2(V, λ) −→ Sc=1
2 ([u1, v1]) + Sc=1

2 ([u2, v2]). (10.22)

この場合も EREは中心電荷のみの関数となるため、差分∆S2はゼロとなる。
さらに、x→ 1の極限の方も同様に理解できる。x→ 0の時と同様に、x→ 1の極限は領

域 V1, V2の長さとして以下のように解釈できる。

x→ 1 ⇐⇒ ℓ3
ℓ1
→ 0 かつ ℓ3

ℓ2
→ 0 . (10.23)

これにより、x→ 1の極限は ℓ1, ℓ2を固定して ℓ3 → 0の極限を取ることで実現できる。これは
2つの領域 V1, V2を合併することを意味する。この場合も EREは単連結の場合に帰着する;

S2(V, λ) −→ Sc=1
2 ([u1, v2]) = 1

4
log

(
ℓ1 + ℓ2
ϵ

)
. (10.24)

この時も同様に EREはmassless Thirring modelの EREは free massless femionの EREに一
致し、差分∆S2はゼロとなる。図 18に ℓ3に値と領域 V1, V2の空間的配置の対応を示した。
最後に、MRIの厳密結果 (10.14) を cross-ratio x の関数としてプロットした (図 19)。結合

定数 λの値によらずMRIは x = 0でゼロ、x→ 1で発散しているがこれは以下のように理解で
きる。x→ 0, x→ 1の極限はそれぞれ領域 V1, V2の間の距離 ℓ3 →∞, ℓ3 → 0の極限を意味
する。(10.22)と (10.24)から、2-intervalのMRIの振る舞いは以下のようになることが示せる。

I2(V1, V2, λ) −→ 0, as ℓ3 →∞ ,

I2(V1, V2, λ) −→ 1
4

log
[

ℓ1ℓ2
ϵ(ℓ1 + ℓ2)

]
=∞, as ℓ3 → 0 ,

(10.25)
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図 19. Cross-ratio dependence of the MRI for λ = 0, 1, 2, 3, 4, 5.
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図 20. EREの差分∆S2(x = 1/2, λ)の結合定数依存性 (左図)とMRI I2(x = 1/2, λ)の結合定数依存性
(右図)。

直感的には、ℓ3 →∞の時は 2つの領域 V1, V2が十分離れるため領域 V1, V2間の量子相関がゼ
ロとなり、ℓ3 → 1の場合 2つの領域 V1, V2が接触するため量子相関が大きくなっていると理解
できる。

10.3.2 結合定数依存性
さて、今度は EREとMRIの Thirring結合定数依存性を見てみよう。今回は cross ratio xを
x = 1/2と固定する。厳密結果 (10.1)から EREの差分 ∆S2(x = 1/2, λ)を結合定数の関数
としてプロットした (図 20)。ここで正の結合定数 λ ≥ 0は T-dualityによって負の結合定数
λdual = −λ/(1 + λ) ≤ 0と対応していることを思い出そう。よって、結合定数が正の範囲のみ
を考えれば十分である。図 20に示れているように、λmax > 0を差分∆S2(x = 1/2, λ)が最大
となる結合定数とする。プロットから差分∆S2(x = 1/2, λ)は 0 ≤ λ ≤ λmaxの範囲で単調増
加し、λ ≥ λmaxの範囲では単調減少に転ずる。さらに、我々は相互作用があるにも関わらず差
分∆S2(x = 1/2, λ)がゼロとなる点、つまりmassless Thirring modelの EREが有限の結合定
数 λ∗ ∼= 1.244で free massless fermionの EREと一致する点を発見した。また、プロットには
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していないが、このような特別な点は x = 1/2以外の cross-ratioの値でも現れることが確認で
きた。
最後に、MRIの結合定数依存性を図 20にプロットした。MRIの場合、任意の結合定数で

常に正となり、λ =∞で log発散を示す。

10.4 Tripartite Rényi information

最後に、tripartite informationと呼ばれる量を考えてみよう34。Tripartite informationは領域
V を V = A∪B ∪Cと三つに分けた場合に定義できる量であり、相互情報量の一般化になって
いる。定義は以下の通り。

I(A,B,C) := S(A ∪B ∪ C)− S(A ∪B)− S(B ∪ C)− S(C ∪A)
+ S(A) + S(B) + S(C)

= I(A,B) + I(A,C)− I(A,B ∪ C) . (10.26)

tripartite informationもエンタングルメントエントロピーや相互情報量と同様に重要な量であ
る。例えば位相的場の理論では tripartite informationはトポロジカルエンタングルメントエン
トロピーと呼ばれ、系のトポロジカルな情報を引き出すことができる [3]。また、ホロウグラ
フィックな理論の場合、tripartite informationは負の値を取ることが知られているため [? ? ]
理論に双対な重力理論があるかどうかの手掛かりになる。しかし、その拡張である tripartite
Rényi informationはあまりよく調べられていない。そこで今回はmassless Thirring modelに
おける tripartite Rényi informationを少し調べてみることとしよう。
我々は領域 V が 2-intervalの場合に相互Rényi情報量の厳密結果を持っている (10.14)。図

21のように領域 B, C が合併している場合、我々はこの結果をそのまま用いることで以下の
n = 2の tripartite Rényi informationを調べることができる;

I2(A,B,C, λ) = I2(xab, λ) + I2(xac, λ)− I2(xabc, λ) . (10.27)

ここで、xab, xac, xabcはそれぞれ領域AとB、AとC、AとB∪Cの cross ratioである。図22に
3つの領域A,B,Cのさまざまな配置において tripartite Rényi information I2(A,B,C, λ) の結
合定数依存性をプロットした。プロットから読み取れるように、tripartite Rényi informationは
どのような配置においても λ = 0でゼロとなる (I2(A,B,C, λ = 0) = 0)。massless free fermion
で tripartite informationを計算している先行研究 [? ]の結果を再現しており、consistentであ
る。興味深いことに、tripartite Rényi information I2(A,B,C, λ)は結合定数が小さい時負の値
になり、ある程度結合定数が大きいと正の値を取る。このように符号が定まっていない理由は
現在のところわかっていないが、ホログラフィー原理を用いた方法 [42]と比較すると面白いだ
ろう。今回の研究ではこれについて調べることができなかったので、今後の展望に残しておく
こととする。

34初めに論文を書いた段階では tripartite informationは考えていなかった。しかし、Physical Review Dの査読
を受けた際にレフェリーから助言を頂き、この内容を追加することになった。真摯に査読して頂き、的確な助言を
くださったレフェリーに感謝します。
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図 21. 三つの領域 A,B,C の模式図。赤、青、オレンジのラインはそれぞれ領域 A,B,C を表す。ここ
で、領域Bと Cは隣接しており、領域B ∪Cは 1つの単連結な領域になっているものとする。また、領
域 A,B,C の長さをそれぞれ ℓa, ℓb, ℓc とし、領域 Aと B の間の距離を Lとする。
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図 22. tripartite Rényi information I2(A,B,C, λ)の結合定数依存性のプロット。三つのグラフはそれ
ぞれ領域 A,B,C の異なる配置を表す。

11 まとめと展望

このセクションではこの修士論文のまとめと研究における今後の展望について述べる。

11.1 まとめ
この修士論文の各セクション毎に簡単に内容をまとめよう。
パート Iでは本研究において重要な概念であるボソン/フェルミオン双対性の入門的なレ

ビューを行った。まずセクション 2では 2次元平面上のボソン/フェルミオン双対性を導入した。
具体例としてmassless free fermionと free compact bosonを扱い、相関関数を比較することで
ボソンとフェルミオンがどのように対応するのかを解説した。また、セクション 3ではトーラ
スを具体例に取り、時空に非自明なサイクルがある場合のボソン/フェルミオン双対性を議論し
た。そして、本研究のメインの道具である時空に非自明なサイクルがある場合のボソン/フェル
ミオン双対性の辞書を導入した。最後にボソン/フェルミオン双対性の応用としてトーラス上の
massless Thirring modelの分配関数を求めた。
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次にパート IIではエンタングルメントのレビューを行った。セクション 4では量子力学か
ら初め、エンタングルメントの入門的な導入を行った。セクション 5では場の量子論における
エンタングルメントを解説し、一般的な計算手法であるレプリカ法を導入した。また、セクショ
ン 6、7では本研究にとって重要な 2つの先行研究をレビューした。
また、パート IIIでは研究内容について述べた。本研究ではmassless Thirring modelとい

うフェルミオンの 4点相互作用を含むモデルを扱い、領域 V が 2-intervalの場合にエンタング
ルメントRényiエントロピーを厳密に導出した。解析の流れとしては、まずセクション 8では
具体的な問題設定をし、レプリカ法を用いてエンタングルメントRényiエントロピーをレプリ
カ多様体上の分配関数で表した。次にセクション 9で解説した共形変換によってこれをトーラ
ス上の分配関数に書き換え、最後にパート Iで述べたボソン/フェルミオン双対性の結果を用い
てmassless Thirring modelのエンタングルメント Rényiエントロピーを導出した。さらにセ
クション 10では得られた厳密結果の性質やパラメーター依存性を議論した。本研究でエンタ
ングルメントRényiエントロピーはThirring couplingが小さい時に増加し、ある値 λmaxを境
に減少に転ずることがわかった。また、相互Rényi情報量については正定値性を示すことがで
き、Thirring couplingが十分大きい時に単調増加することがわかった。相互Rényi情報量は領
域 V = V1 ∪ V2の 2つの interval V1, V2の間のエンタングルメントの大きさを表すため、相互
作用が大きい場合に相互Rényi情報量が増加したことは直感に合った結果であった。

11.2 今後の展望
本研究の応用をいくつか挙げる。

• 領域 V を構成する領域の数を増やす、またはレプリカシートの数を増やす
本研究では領域 V が 2 つの単連結な領域で構成される場合の 2 シートの ERE(つまり
(n,N) = (2, 2))しか扱っていない。より一般の領域 V の構成、シート数で ERE,MRIを
求めることは面白い応用だろう。一般に領域 V が n個の単連結な領域で構成される場合の
Nシートのレプリカ多様体Σn,N は共形変換で genusが (n−1)(N−1)個のRiemann面に
mapすることができる。また、そのような genusを複数個持つ場合でもボソン/フェルミオ
ン双対性の辞書 (3.85)は成り立つ [20]。この場合、より多くの genusをもった多様体上で
の compact bosonの分配関数が必要となるが、そのような分配関数はすでに調べられてい
る [43–45]。今回はΣ2,2 → Tの共形変換を用いたが [40]、より一般のΣn,N , n ≥ 3, N ≥ 3
に対する共形変換を求めることができれば我々の手法をそのまま n ≥ 3, N ≥ 3の場合に
応用することができる。

• massive Thirring model
massive Thirring modelは sine-Gordonモデルと双対であることが知られている [19]。こ
の場合、CFTではないため本研究と同じ手法をそのまま使うことはできない (解析の途
中で共形変換を使用している)。しかし、massが小さい場合を考え、摂動論を用いること
はできる。mass perturvationによって本研究の補正項を求めることは面白いだろう。free
massive fermionに対しては同じようにmass perturbationの議論がなされている [14, 46]。
この先行研究も参考になるだろう。
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• 他の spin structureを調べる
本研究ではレプリカ多様体上の分配関数をトーラスの分配関数に書き換えた時、トーラス
の spin structureを ϱ = AAとした。これはレプリカ法の境界条件から自然な結果である
が、それ以外の spin structureを考えるのも面白いだろう。トーラス上で spin structure
を ϱ = AAから変えることは、レプリカ多様体上で見ると fermion parity演算子 (−1)F :
ψ(x)→ −ψ(x)を特定の領域に挿入することを意味する。このように fermion parity演算
子を系に挿入しエンタングルメントを調べている先行研究はすでにある [47, 48]。本研究
の手法を用いてmassless Thirring modelにおける結果を比較するのは面白いだろう。

• 超対称性のある理論に対するエンタングルメントRényiエントロピー
free compact bosonはと超対称性が出現するRの値が存在する。一方、超対称性のある
理論に対する EREはすでに先行研究がある [49–51]。我々の手法を超対称性のある理論
に対するエンタングルメントRényiエントロピーに応用することは面白いだろう。
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A mod 2 indexと cup積に関する公式

公式：genus が g個ある Riemann面を Xg とおく。sを Z2 gauge場とする (s ∈ H1(Xg,Z2))
と、以下の公式が成り立つ。 ∑

s

(−1)I[s·ϱ] = 2g . (A.1)

公式：s, tを Z2 gauge場、∪ をカップ積とする。以下の公式が成り立つ。

I[(s+ t) · ρ] = I[s · ρ] + I[t · ρ] + I[ρ] +
∫
s ∪ t (A.2)

公式：

1
2g
∑
s

(−1)
∫
s∪t =

 2g t = 0 for all cycles
0 otherwise

(A.3)

B ϑ関数と ℘関数の公式

この付録ではこの修士論文でよく使う Jacobi theta関数とWeierstrassのペー関数についてま
とめる。このセクションでは基本的に公式の導出は行わず、結果だけを述べる。ここに書かれ
ている内容はYello book[22]とNIST を参考にしている。
まずは Jacobi theta関数から述べる。定義と公式は以下の通り。

定義：q = e2πiτ とする。Jacobi theta関数 ϑj(τ), j = 2, 3, 4とDedekind eta関数 η(τ)は以
下のように定義されている。

η(τ) := q
1

24
∏
n=1

(1− qn) , q := e2πi τ , (B.1)

ϑ2(τ) :=
∑

n∈Z+ 1
2

q
n2
2 , ϑ3(τ) :=

∑
n∈Z

q
n2
2 ,

ϑ4(τ) :=
∑
n∈Z

(−1)n q
n2
2 .

(B.2)
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公式：Jacobi恒等式

ϑ3(τ)4 − ϑ2(τ)4 − ϑ4(τ)4 = 0 . (B.3)

公式：Eta 関数と theta 関数の関係式

2η(τ)3 = ϑ2(τ)ϑ3(τ)ϑ4(τ) . (B.4)

倍角恒等式

ϑ2(2τ) =
(
ϑ3(τ)2 − ϑ4(τ)2

2

) 1
2

,

ϑ3(2τ) =
(
ϑ3(τ)2 + ϑ4(τ)2

2

) 1
2

,

ϑ4(2τ) = (ϑ3(τ) ϑ4(τ))
1
2 .

(B.5)

半角恒等式

ϑ2

(
τ

2

)
= (2ϑ2(τ)ϑ3(τ))

1
2 ,

ϑ3

(
τ

2

)
=
(
ϑ3(τ)2 + ϑ2(τ)2

) 1
2 ,

ϑ4

(
τ

2

)
=
(
ϑ3(τ)2 − ϑ2(τ)2

) 1
2 .

(B.6)

Half identitiesは上のDoubling identitiesから導ける。
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modular S 変換性

ϑ2

(
−1
τ

)
=
√
−i τ ϑ4(τ) ,

ϑ3

(
−1
τ

)
=
√
−i τ ϑ3(τ) ,

ϑ4

(
−1
τ

)
=
√
−i τ ϑ2(τ) ,

η

(
−1
τ

)
=
√
−i τ η(τ) .

(B.7)

漸近系

ϑ2(i ℓ) ∼ 2e−πℓ
4 ,

ϑ3(i ℓ) ∼ 1 + 2e−πℓ , as ℓ ∼ ∞ ,

ϑ4(i ℓ) ∼ 1− 2e−πℓ .

(B.8)

ϑ2(i ℓ) ∼ ℓ−1/2 ,

ϑ3(i ℓ) ∼ ℓ−1/2 , as ℓ ∼ 0 ,

ϑ4(i ℓ) ∼ 2 ℓ−1/2 e− π
4ℓ .

(B.9)

ℓ ∼ ∞の漸近形はϑ関数の定義 (B.2)から導ける。ℓ ∼ 0の漸近形はModular properties
(B.7)から ℓ ∼ ∞の漸近形に帰着できる。

C Weierstrassのペー関数

この付録ではWeierstrassのペー関数についてまとめる。

定義：Lattice generatorを 1, τ とする。この時、weierstrassのペー関数 ℘は以下のように定義
される。

℘(z) := 1
z2 +

∑
(n,m) 6=(0,0)

[ 1
(z +m+ nτ)2 −

1
(m+ nτ)2

]
. (C.1)
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℘(z)の周期性：

℘(z) = ℘(z + 1) = ℘(z + τ) . (C.2)

℘(z)の特別な点の性質：定数 e1, e2, e3を以下のように定義する。

e1 = ℘(1/2) , e2 = ℘(τ/2) , e3 = ℘((τ + 1)/2) . (C.3)

すると、以下のような関係式が成り立つ。

e1 + e2 + e3 = 0 (C.4)

e1 = π2

3

(
ϑ4

2(τ) + 2ϑ4
4(τ)

)
,

e2 = π2

3

(
ϑ4

2(τ)− ϑ4
4(τ)

)
, (C.5)

e3 = −π
2

3

(
2ϑ4

2(τ) + ϑ4
4(τ)

)
.

℘(z)の微分： (
℘′(z)

)2 = 4 [℘(z)− e1] [℘(z)− e2] [℘(z)− e3] ,

℘′′(z) = 6
(
℘(z)2 + e

)
,

℘′′′(z) = 12℘(z)℘′(z) ,

(C.6)

ここで、e := (e1e2 + e2e3 + e3e1)/3を用いた。

これより、以下の楕円積分との関係性があることがわかる。

楕円積分との関係：

z = 1
2

∫ ∞

℘(z)
[(t− e1)(t− e2)(t− e3)]−1/2 dt . (C.7)

左辺を z微分して (C.6)を用いると示せる。
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