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1. Introduction

本発表のトピック：

量⼦情報理論 対称性の破れとその回復応⽤

Take home message : 
量⼦情報的な観点を⽤いることで、対称性の破れとその回復に対する
新たな側⾯を⾒ることができる。
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1. Introduction

Conventionalな⽅法 ： order parameter ⟨𝒪⟩ を計算する。

𝒪
= 0 : 対称性がある
≠ 0 : 対称性が破れている

量⼦情報的な⽅法 ：相対エントロピー 𝛥𝑆を⽤いる。
Entanglement asymmetry 

メリット
・対称性の破れの⼤きさを定量化できる。
・⾮平衡状態に対しても⾃然に使える。
・量⼦Mpembe効果という物理現象を⾒ることができる(後述)

[Ares-Murciano-Calabrese, 2022]
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1. Introduction
⾮平衡状態が現れる状況として以下を考える：

部分系𝐴だけに注⽬すれば、時間発展によって対称性が回復する。
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𝜓!"(0) : 対称性がexplicitに破れた状態

𝜓!"(𝑡) = 𝑒#$%& 𝜓!"(0) , 𝐻 ∶対称性のあるHamiltonian

全体系=𝐴 ∪ 𝐵 ,  𝐴 : 注⽬している系

対称性のあるHamiltonianによるクエンチ

空間⽅向

𝐴𝐵 𝐵



1. Introduction
⾮平衡状態が現れる状況として以下を考える：

部分系𝐴だけに注⽬すれば、時間発展によって対称性が回復する。

量⼦情報的な⽅法により、以下の現象が⾒つかった。

直感に反する現象：e.g. “熱いコーヒーがぬるいコーヒーよりも早く冷める”

量⼦Mpemba(ムぺンバ)効果 … 対称性の破れが⼤きい状態ほど、対称性の回復が早くなる現象
[Ares-Murciano-Calabrese, 2022][Mpemba-Osborn, 1969]
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1. Introduction
量⼦情報的な⽅法

仮定
・理論に対称性𝐺がある

・Hilbert空間のテンソル積構造: ℋ&'& = ℋ!⊗ℋ"

𝑈%&% 𝑔 = 𝑈' 𝑔 ⊗𝑈( 𝑔 , 𝑔 ∈ 𝐺
:symmetry operatorのテンソル積構造

[Ares-Murciano-Calabrese, 2022]

𝜌!: 注⽬している系𝐴の密度⾏列(⼀般には対称性を持たない)

𝜌!,) ≡ 5
)
d𝑔 𝑈! 𝑔 𝜌!𝑈!

* 𝑔
Haar積分

: 対称化された密度⾏列
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Entanglement Asymmetry (EA): 部分系における対称性の破れを定量化する量

𝛥𝑆' ≡ Δ𝑆 𝜌' 𝜌',* = Tr' 𝜌' log 𝜌' − log 𝜌',*
相対エントロピー



1. Introduction
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EAの重要な性質：

𝛥𝑆' > 0 ⇔ 𝜌', 𝑈' 𝑔 ≠ 0 (対称性の破れ)  

𝛥𝑆' = 0 ⇔ 𝜌', 𝑈' 𝑔 = 0 (対称性がある)  

[Kullbck-Leibler, 1951]

1. 任意の状態に対して定義される→⾮平衡状態も扱える。

2. ⾮負性：

3. 部分系における対称性の破れの定量化：

0 < 𝛥𝑆' < 𝛥𝑆′'
対称性の破れが ⼩さい ⼤きい

EAは対称性の破れを定量化する性質の良い量



1. Introduction
これにより対称性の回復に関する量⼦Mpemba効果が盛んに研究されるようになった。

先⾏研究
・量⼦スピン系(空間1次元、2次元、可積分系)
・実験的な検証
・(1+1)次元共形場理論(𝑈(1)に限る) 

[Joshi et al, 2024] and so on

[Benini-Godet-Singh, 2024]

(量⼦Mpemba効果)

[Murciano et al, 2023] and so on

先⾏研究では𝑈(1), ℤ!といったAbelianの対称性のみを扱っている。
non-Abelianに対する量⼦Mpemba効果はまだよくわかっていない(特に場の理論)。
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1. Introduction
これにより対称性の回復に関する量⼦Mpemba効果が盛んに研究されるようになった。

本研究
・Wess-Zumino-Witten modelを⽤いて𝑆𝑈 𝑁 対称性に対するEAを⼀般の𝑁で厳密に解析した。
・量⼦Mpemba効果がnon-Abelianに対しても存在することを初めて⽰した。
・新しいタイプの量⼦Mpemba効果を発⾒した(後述)。
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先⾏研究
・量⼦スピン系(空間1次元、2次元、可積分系)
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・(1+1)次元共形場理論(𝑈(1)に限る) 
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non-Abelianに対する量⼦Mpemba効果はまだよくわかっていない(特に場の理論)。



2. 本研究の内容



2. 本研究の内容
2𝑠𝑢 𝑁 " Wess-Zumino-Witten model (2次元CFT) を考える。
Mermin-Wagnerの定理より、⾃発的対称性の破れは起こらない。[Mermin-Wagner, 1966]

Rényi EAの時間発展を⾒ることで、部分系における対称性の回復を調べられる。

𝜌! = Tr" 𝜓!" 𝜓!" =

初期状態

𝜓!"(𝑡 = 0) = Φ$ 𝑥+, 𝜏+ 0

Φ#: 基本表現のプライマリ場
(𝑖 = 1, … , 𝑁)

𝑺𝑼(𝑵)対称性をexplicitに破る状態

部分系𝐴に注⽬

𝛥𝑆'
(<) ≡ =

=>< log
?@! A!,#

$

?@! A!
$ ,    lim

<→=
𝛥𝑆'

(<) = 𝛥𝑆'

計算する量 : Rényi EA 

𝐴
×

×

空間

Euclid
時間

Φ#
$

Φ#

経路積分表⽰
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2. 本研究の内容

解析⽅法の概要:

簡単のため𝛥𝑆%
& 𝑛 = 2 を考える。

レプリカ法

Tr% 𝜌%,(& ~

ℛK

共形変換

ℛK →

ℝK

4点関数の計算

Φ$Φ,*Φ-Φℓ
*

[Knizhnik et al, 1984]

→解析形が知られている

[Benini et al, 2024] [He et al, 2024]

これらの⼿法を組み合わせて、>𝑠𝑢 𝑁 - WZW modelにおけるRényi EAを厳密に導出した。
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2. 本研究の結果
時間発展により𝑆𝑈 𝑁 対称性の回復を⾒る。

𝐴

×

×

𝜌' =
𝜏L

初期状態

𝜏): 初期状態の対称性の破れを変える
パラメーター

対称性の破れ

対称性が回復
時間

対称性の破れの⼤きさ
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2. 本研究の結果
時間発展により𝑆𝑈 𝑁 対称性の回復を⾒る。
(𝑁は固定)

𝐴

×

×

𝜌' =
𝜏L

初期状態

𝜏): 初期状態の対称性の破れを変える
パラメーター

時間

対称性の破れの⼤きさ

Non-Abelianで量⼦Mpemba効果があることを解析的に⽰した。

対称性の破れが⼤きい状態ほど
対称性の回復が早い

10/12



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

2. 本研究の結果
𝑆𝑈 𝑁 のランク𝑁の依存性を⾒る。

𝐴

×

×

𝜌' =
𝜏L

初期状態

𝝉𝟎 を固定して、 𝑵 を動かす。
時間

対称性の破れの⼤きさ
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2. 本研究の結果
𝑆𝑈 𝑁 のランク𝑁の依存性を⾒る。

𝐴

×

×

𝜌' =
𝜏L

初期状態

𝝉𝟎を固定して、 𝑵を動かす。
時間

対称性の破れの⼤きさ

ランク𝑵を増やすと
初期状態の対称性の破れは⼤きくなるが
対称性の回復は早くなる。

新しいタイプの量⼦Mpemba効果を発⾒した。
11/12
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3. まとめ

時間の都合上紹介できなかった内容
・準粒⼦状態による物理的解釈
・level 𝑘 依存性とその量⼦Mpemba効果
・初期状態としてWZWカレント(随伴表現)を⽤いた場合： 𝜓%+(𝑡 = 0) = 𝐽, 0

この発表のまとめ
・近年では量⼦情報的な観点から対称性が調べられている→量⼦Mpemba効果
・先⾏研究ではAbelianが主に扱われ、non-Abelianに対する量⼦Mpemba効果はよくわかっていなかった。
・本研究では2𝑠𝑢 𝑁 " WZW modelを⽤いてnon-Abelianでも量⼦Mpemba効果があることを初めて⽰した。
・さらに、新しいタイプの量⼦Mpemba効果を発⾒した。

今回発表した内容は結果の⼀部。

arXiv: 2509.05597v2

https://arxiv.org/abs/2509.05597
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Appendix
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Appendix: 今後の展望

・ 2𝑠𝑜 𝑁 ", 2𝑠𝑝 𝑁 " 対称性への拡張→今回の解析がstraightforwardに使える。
・今回は基本表現と随伴表現を考えたが、他の表現で量⼦Mpemba効果があるかどうか。
・量⼦Mpemba効果に対する有限温度効果
・量⼦Mpemba効果のmicroscopicな起源と物理的解釈



Appendix: level 𝑘 依存性について
Level 𝑘 依存性を⾒る。

𝐴

×

×

𝜌' =
𝜏L

初期状態

𝝉𝟎を固定して、 level 𝒌 を動かす。
時間

対称性の破れの⼤きさ
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Level 𝑘 依存性を⾒る。

𝐴

×

×

𝜌' =
𝜏L

初期状態

𝝉𝟎を固定して、 level 𝒌 を動かす。
時間

対称性の破れの⼤きさ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Level 𝒌を増やすと
初期状態の対称性の破れは⼩さくなるが
対称性の回復は遅くなる。

これも新しいタイプの量⼦Mpemba効果。

Appendix: level 𝑘 依存性について



Appendix: カレントに対するEA

時間

対称性の破れの⼤きさ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

𝝉𝟎依存性( 𝑵, 𝒌 は固定) 

初期状態
𝜓'((𝑡 = 0) = 𝐽V 𝑥L, 𝜏L 0

𝑎 = 1,… , 𝑁& − 1
𝐽, ∶随伴表現のWZWカレント

𝐴

×

×

𝜌' =
𝜏L

簡単のため、𝑘 → ∞の極限を取る。

対称性の破れが⼤きい状態ほど
対称性の回復が早い

この場合も量⼦Mpemba効果があることを⽰した。
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Appendix: カレントに対するEA

時間

対称性の破れの⼤きさ

対称性の破れが⼤きい状態ほど
対称性の回復が遅い→普通

この場合は新しいタイプの量⼦Mpemba効果はなし。

𝑵依存性(𝝉𝟎は固定) 

初期状態
𝜓'((𝑡 = 0) = 𝐽V 𝑥L, 𝜏L 0

𝑎 = 1,… , 𝑁& − 1
𝐽, ∶随伴表現のWZWカレント

𝐴

×

×

𝜌' =
𝜏L

簡単のため、𝑘 → ∞の極限を取る。



Appendix: 準粒⼦状態による解釈について

解析結果初期状態

𝐴×

×
𝜌' =

𝜖
|𝑥+|

𝜓!"(𝑡 = 0) = Φ$ 𝑥+, 𝜏+ 0

Φ#: 基本表現のプライマリ場
(𝑖 = 1, … , 𝑁)

𝜏+ → 0の極限を考える。

時間

対称性の破れの⼤きさ



Appendix: 準粒⼦状態による解釈について

解析結果

物理的解釈

時間 準粒⼦

時間

対称性の破れの⼤きさ
初期状態

𝐴×

×
𝜌' =

𝜖
|𝑥+|

𝜓!"(𝑡 = 0) = Φ$ 𝑥+, 𝜏+ 0

Φ#: 基本表現のプライマリ場
(𝑖 = 1, … , 𝑁)

𝜏+ → 0の極限を考える。


