

Entanglement asymmetry in Wess-Zumino-Witten model

Harunobu Fujimura

Collaborator: Soichiro Shimamori

2025/11/18 10:00~10:15

[arXiv: 2509.05597v2](https://arxiv.org/abs/2509.05597v2)

1. Introduction

Main topic of this talk:

Quantum information
theory

Symmetry breaking
and its restoration

Take-home message:

A quantum-information perspective reveals a new aspect of symmetry breaking and its restoration.

1. Introduction

Conventional method : order parameter $\langle \mathcal{O} \rangle$

$$\langle \mathcal{O} \rangle \left\{ \begin{array}{l} = 0 : \text{symmetry preservation} \\ \neq 0 : \text{symmetry breaking} \end{array} \right.$$

New approach based on quantum information:

Entanglement asymmetry = relative entropy [Ares-Murciano-Calabrese, 2022]

Advantages: $\left\{ \begin{array}{l} \cdot \text{Quantifies the degree of symmetry breaking} \\ \cdot \text{Applicable to out-of-equilibrium systems.} \\ \cdot \text{Enables discussion of the **Quantum Mpemba effect** (explained later)} \end{array} \right.$

1. Introduction

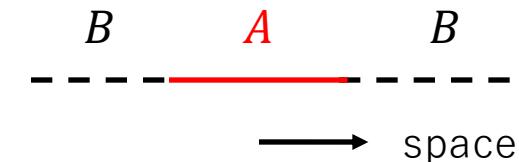
Let us consider the following out-of-equilibrium dynamics:

Quench by a symmetric Hamiltonian

Total system = $A \cup B$, A : subsystem of interest

$|\psi_{AB}(0)\rangle$: (explicit) Symmetry-broken initial state

$|\psi_{AB}(t)\rangle = e^{-iHt}|\psi_{AB}(0)\rangle$, H : Hamiltonian with a symmetry



After some time, the symmetry is restored on subsystem A .

1. Introduction

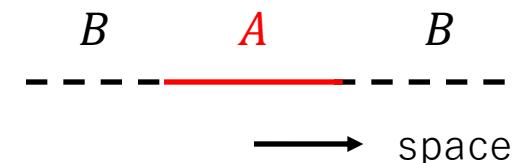
Let us consider the following out-of-equilibrium dynamics:

Quench by a symmetric Hamiltonian

Total system = $A \cup B$, A : subsystem of interest

$|\psi_{AB}(0)\rangle$: (explicit) Symmetry-broken initial state

$|\psi_{AB}(t)\rangle = e^{-iHt}|\psi_{AB}(0)\rangle$, H : Hamiltonian with a symmetry



→ After some time, the symmetry is restored on subsystem **A**.

The new approach uncovers the following phenomenon:

Quantum Mpemba effect … The **more** symmetry is initially broken, the **faster** it is restored.

[Mpemba-Osborn, 1969] [Ares-Murciano-Calabrese, 2022]

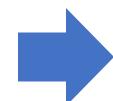
→ A counterintuitive phenomenon! e.g., “Hot coffee can cool faster than warm coffee.”

1. Introduction

New approach based on quantum information [Ares-Murciano-Calabrese, 2022]

Assumptions

- Theory has a symmetry G .
- Decomposition of Hilbert space : $\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_B$



$$U_{tot}(g) = U_A(g) \otimes U_B(g), \quad g \in G$$

Symmetry operators are also decomposed.

Entanglement Asymmetry (EA)

: A quantitative measure of symmetry breaking at the level of subsystem.

$$\Delta S_A \equiv \underline{\Delta S(\rho_A | \rho_{A,G})} = \text{Tr}_A [\rho_A (\log \rho_A - \log \rho_{A,G})]$$

Relative entropy

ρ_A : reduced density matrix on subsystem A (not symmetric in general)

$$\rho_{A,G} \equiv \underline{\int_G dg} U_A(g) \rho_A U_A^\dagger(g) \quad : \text{symmetrized density matrix}$$

Haar integral

1. Introduction

Important properties of EA

1. Defined for any states → valid even for out of equilibrium.

2. Non-negativity:

$$\left\{ \begin{array}{l} \Delta S_A = 0 \Leftrightarrow [\rho_A, U_A(g)] = 0 \text{ (symmetry preservation)} \\ \Delta S_A > 0 \Leftrightarrow [\rho_A, U_A(g)] \neq 0 \text{ (symmetry breaking)} \end{array} \right.$$

[Kullback-Leibler, 1951]

3. Quantifies the degree of symmetry breaking on a subsystem

$$0 < \underline{\Delta S_A} < \underline{\Delta S'_A}$$

Degree of symmetry breaking: Small Large

→ EA serves a quantitative measure of symmetry breaking on subsystem

1. Introduction

From this formalism, many works have discussed the quantum Mpemba effect though symmetry restoration.

Previous studies (about quantum Mpemba effect)

- Quantum spin chains (1d, 2d, integrable system) [Murciano et al, 2023] and so on
- Experimental observations on quantum computers [Joshi et al, 2024] and so on
- (1+1)d CFT (but only $U(1)$) [Benini-Godet-Singh, 2024]

Most previous studies focus on Abelian symmetries such as $U(1)$ or \mathbb{Z}_N .

The Quantum Mpemba effect for non-Abelian symmetries remains unknown (especially in QFT).

1. Introduction

From this formalism, many works have discussed the quantum Mpemba effect though symmetry restoration.

Previous studies (about quantum Mpemba effect)

- Quantum spin chains (1d, 2d, integrable system) [Murciano et al, 2023] and so on
- Experimental observations on quantum computers [Joshi et al, 2024] and so on
- (1+1)d CFT (but only $U(1)$) [Benini-Godet-Singh, 2024]

Most previous studies focus on Abelian symmetries such as $U(1)$ or \mathbb{Z}_N .

The Quantum Mpemba effect for non-Abelian symmetries remains unknown (especially in QFT).

Our work

- We investigate the EA for $SU(N)$ symmetry for general N using Wess-Zumino-Witten model.
- We demonstrate the existence of a **quantum Mpemba effect for non-Abelian symmetry for the first time**.
- **We uncover a new type of quantum Mpemba effect** (see later)

2. Our work

2. Our work

Let's consider the $\widehat{su}(N)_k$ Wess-Zumino-Witten model (2d CFT)

Mermin-Wagner theorem prohibits spontaneous symmetry breaking. [Mermin-Wagner, 1966]

Initial state

$$|\psi_{AB}(t = 0)\rangle = \Phi_i(x_0, \tau_0)|0\rangle$$

Φ_i : primary field in fund. rep.
($i = 1, \dots, N$)

**$SU(N)$ symmetry broken state
(explicitly)**

Focus on
Subsystem A

$$\rho_A = \text{Tr}_B[|\psi_{AB}\rangle\langle\psi_{AB}|] =$$

Euclid
time
↑
space

$$\boxed{\begin{array}{c} \times \Phi_i^\dagger \\ A \equiv \\ \times \Phi_i \end{array}}$$

Path integral rep.

Quantity of interest: Rényi EA

$$\Delta S_A^{(n)} \equiv \frac{1}{1-n} \log \frac{\text{Tr}_A[\rho_{A,G}^n]}{\text{Tr}_A[\rho_A^n]}, \quad \lim_{n \rightarrow 1} \Delta S_A^{(n)} = \Delta S_A$$

By analyzing the time evolution of the Rényi EA, we can study the symmetry restoration dynamics on the subsystem.

2. Our work

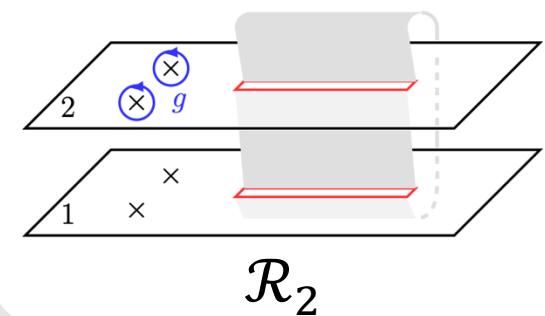
For simplicity, let us consider $\Delta S_A^{(2)}$ (the case $n = 2$).

Flow of our analysis:

Replica trick

[Benini et al, 2024]

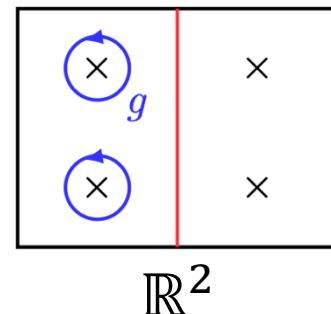
$$\text{Tr}_A[\rho_{A,G}^2] \sim$$



Conformal transf.

[He et al, 2024]

$$\mathcal{R}_2 \rightarrow$$



4pt function

[Knizhnik et al, 1984]

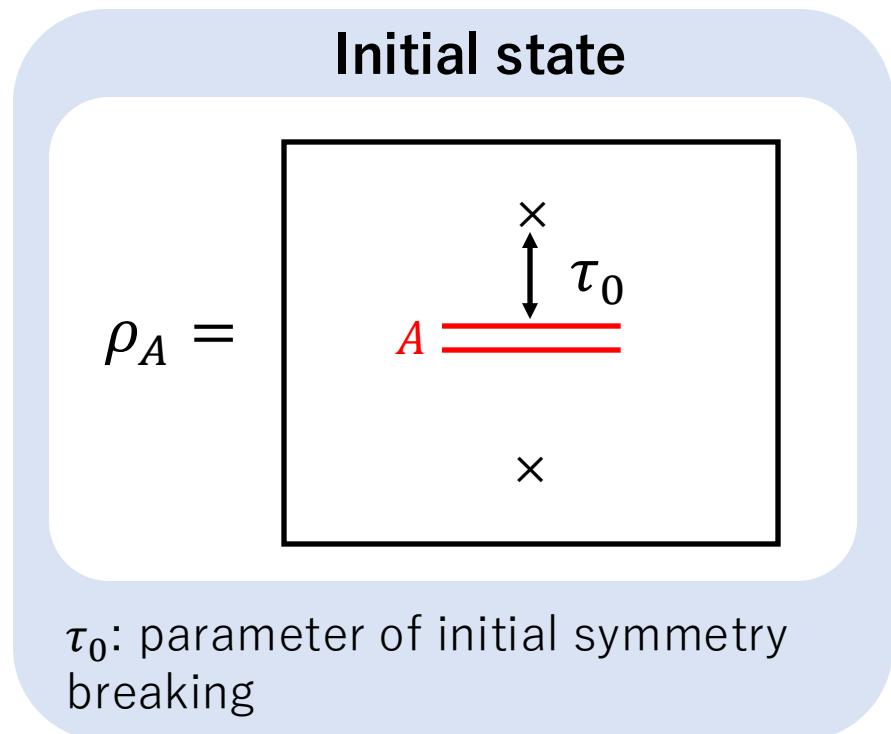
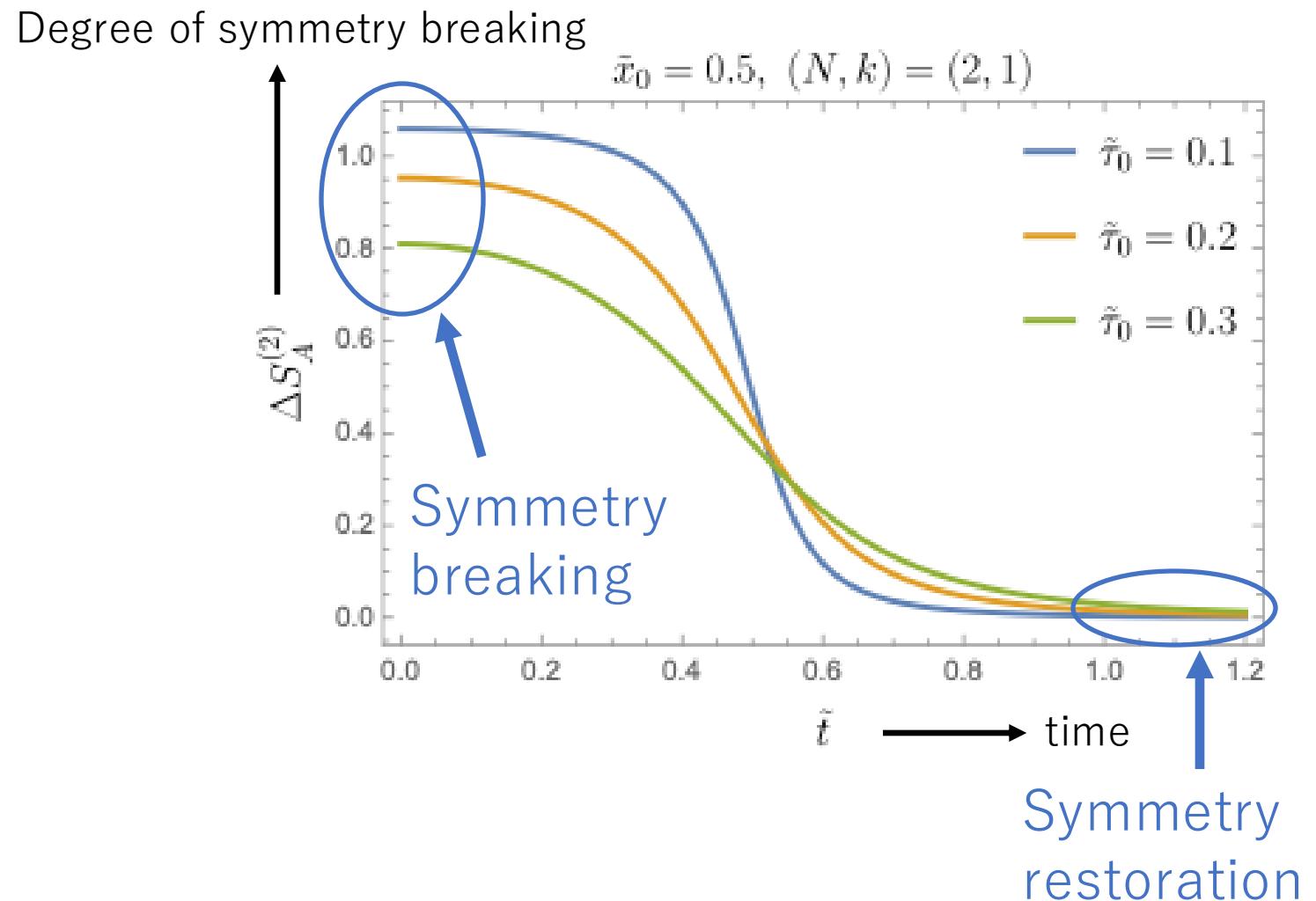
$$\langle \Phi_i \Phi_j^\dagger \Phi_k \Phi_\ell^\dagger \rangle$$

→ Solvable analytically.

By combining these methods, we analytically derived the Rényi EA in $\widehat{\mathfrak{su}}(N)_k$ WZW model.

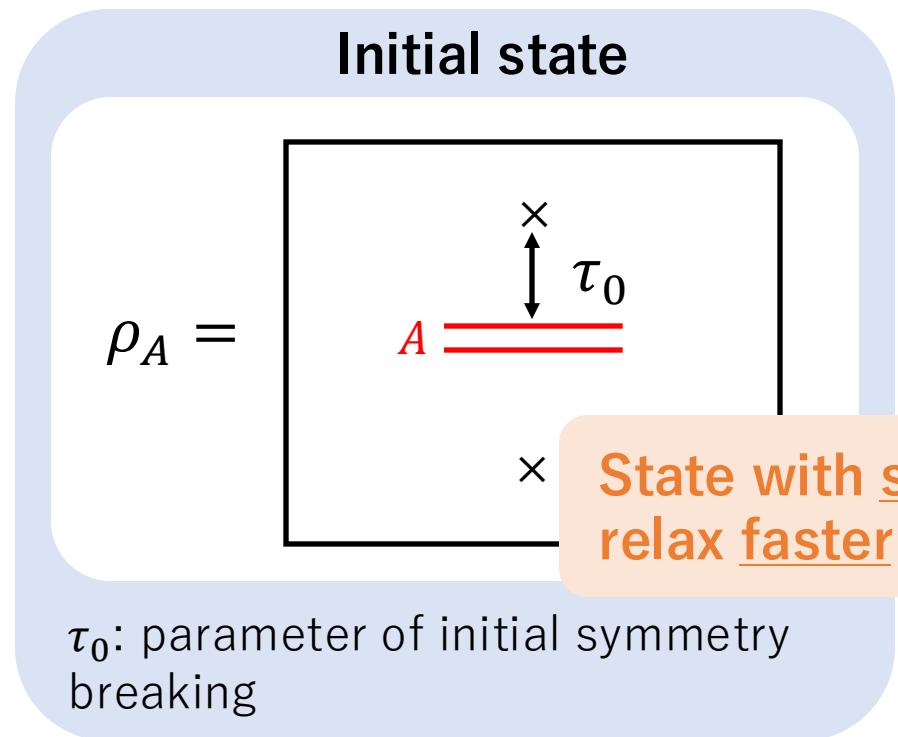
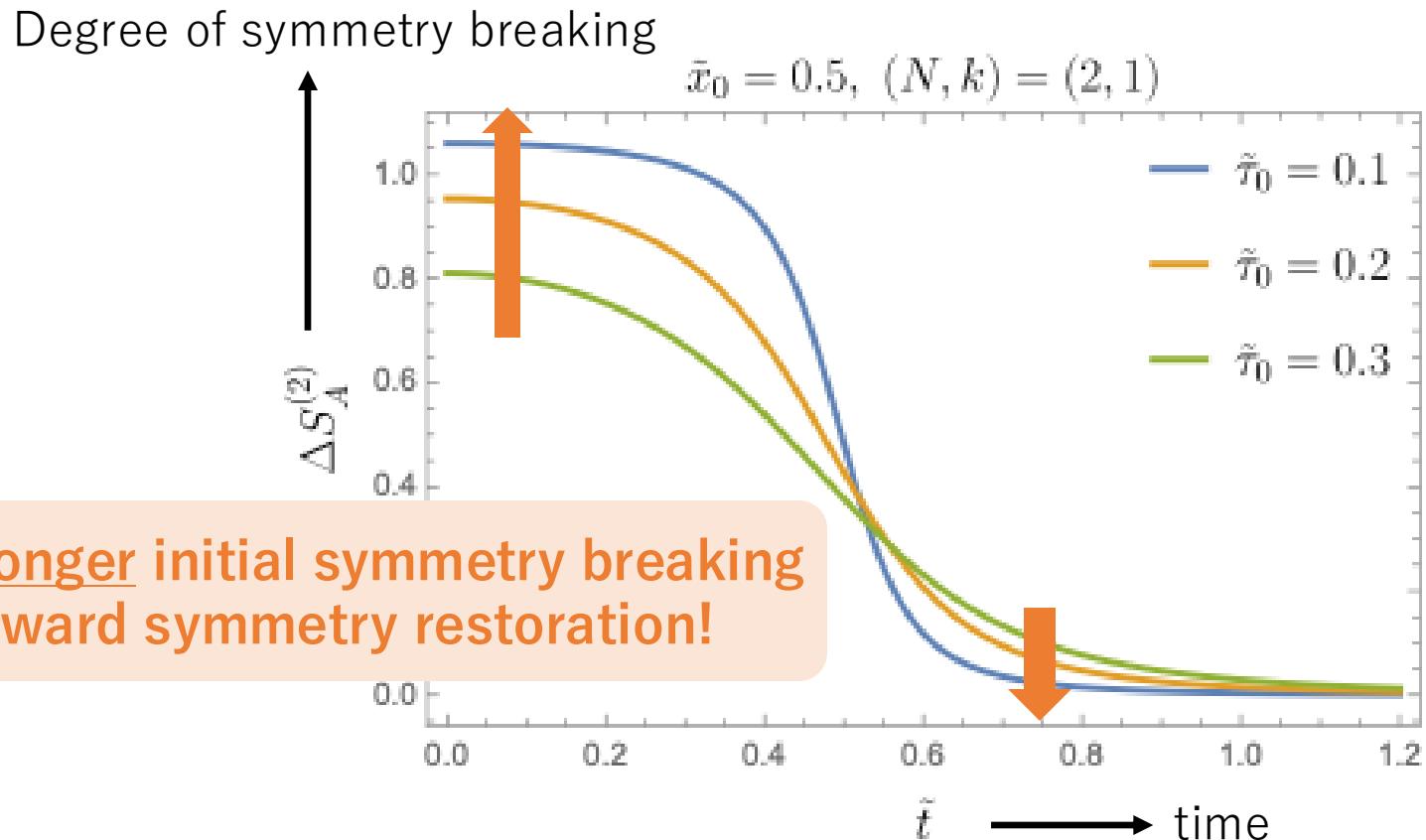
2. Our work

Let us examine the $SU(N)$ symmetry-restoration dynamics.



2. Our work

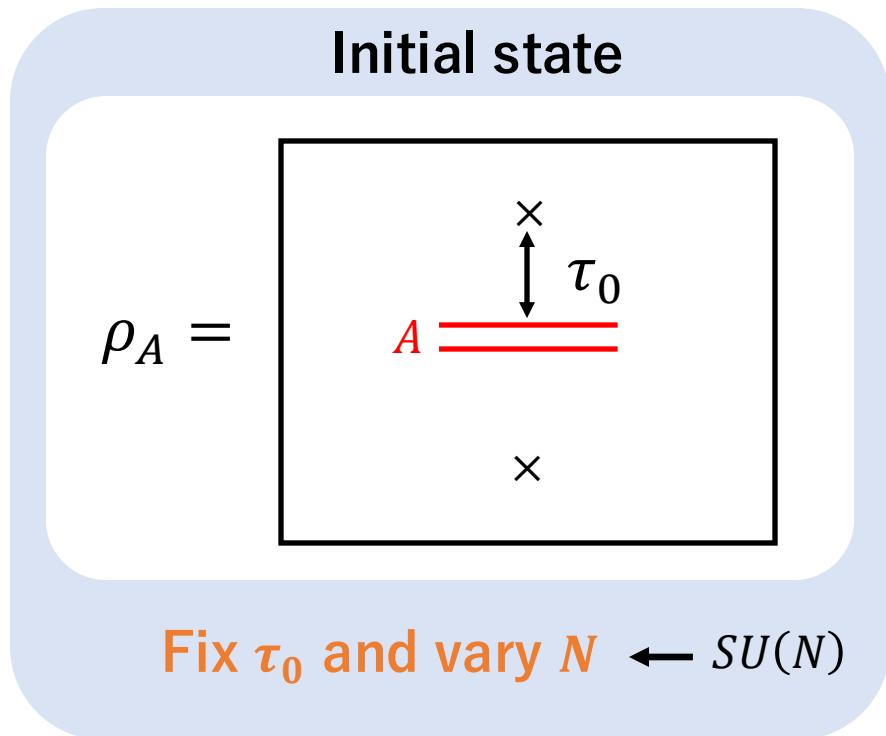
Let us examine the $SU(N)$ symmetry-restoration dynamics.



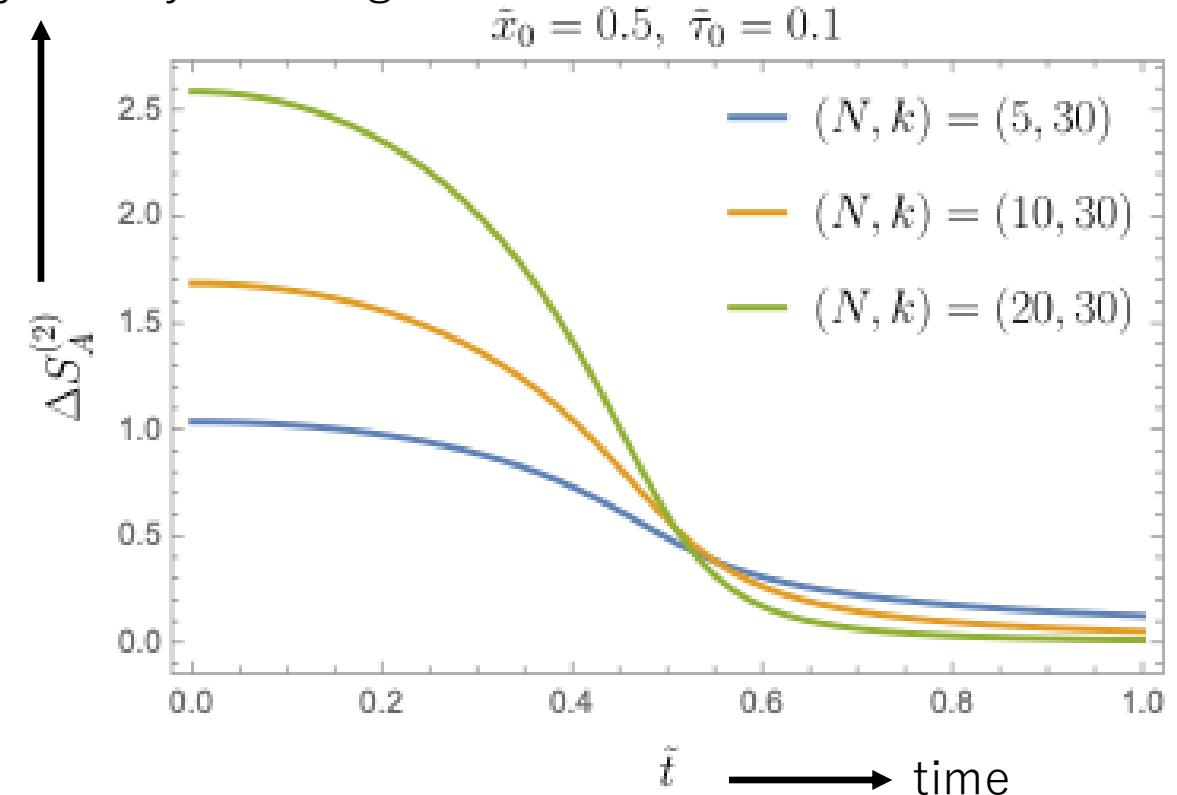
We analytically show the quantum Mpemba effect for non-Abelian symmetry.

2. Our work

Let us consider the rank N dependence.

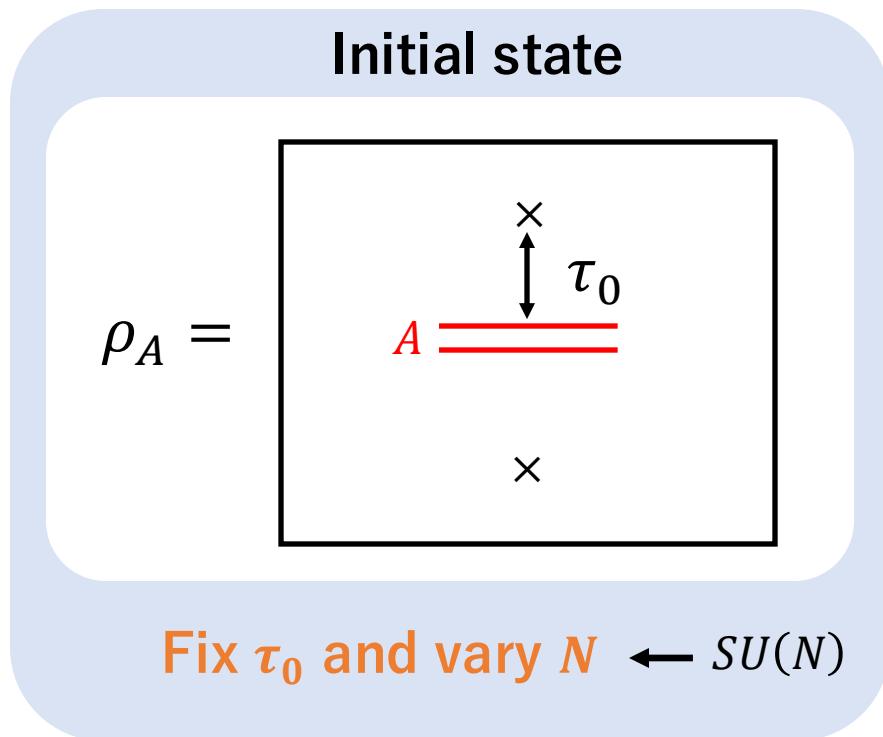
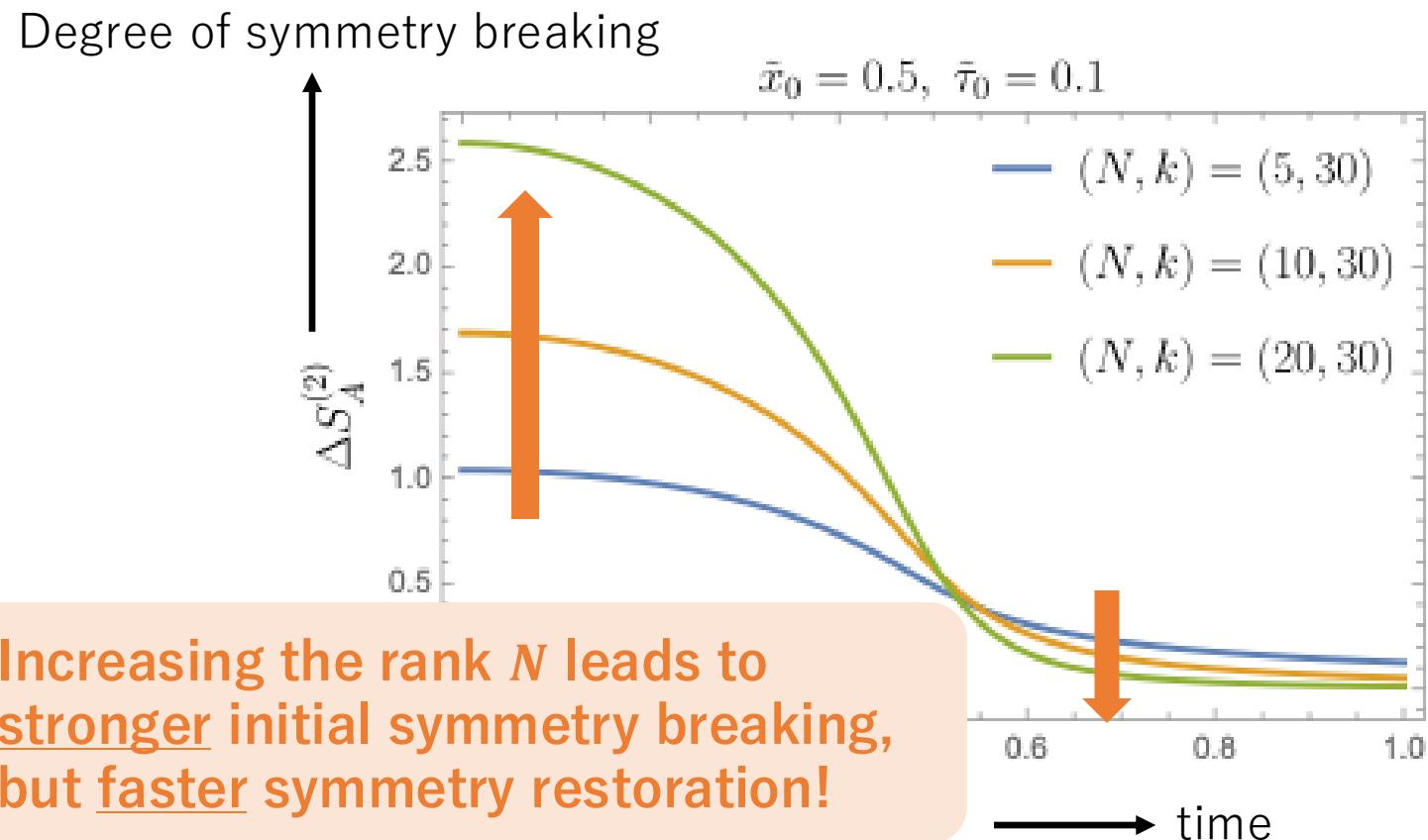


Degree of symmetry breaking



2. Our work

Let us consider the rank N dependence.



→ We uncover a new type of quantum Mpemba effect!

3. Summary

We presented part of our results.

Other contents (not showed here)

- Physical interpretation via the quasiparticle picture
- Level- k dependence and associated quantum Mpemba effect.
- Another initial state : $|\psi_{AB}(t = 0)\rangle = J^a|0\rangle$, J^a : WZW current of adjoint rep.

[arXiv: 2509.05597v2](https://arxiv.org/abs/2509.05597v2)

Summary of this talk

- Recently, symmetry has been actively studied from a quantum information perspective
→ Quantum Mpemba effect
- Previous works have mainly focused on Abelian symmetries:
the quantum Mpemba effect for non-Abelian symmetries were not understood.
- In this work, **we showed the quantum Mpemba effect for non-Abelian symmetry for the first time.**
- Furthermore, **we uncovered a new type of quantum Mpemba effect.**

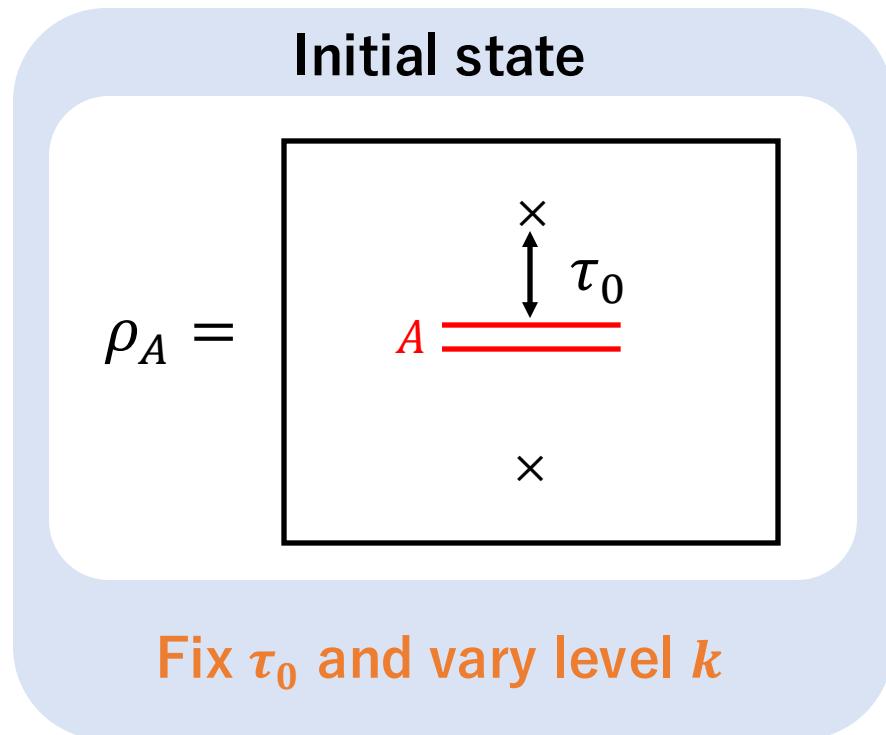
Appendix

Appendix: future directions

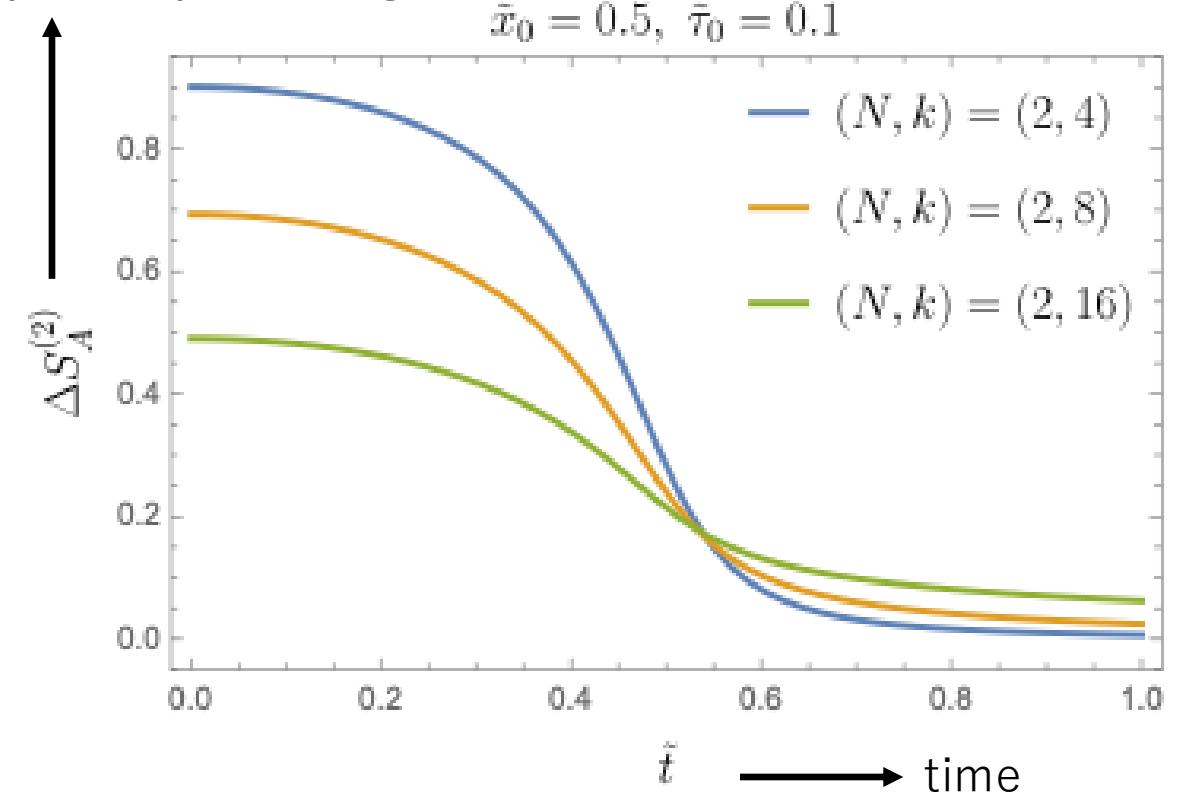
- Extension to $\widehat{so}(N)_k$ and $\widehat{sp}(N)_k$ WZW model→analysis is completely parallel.
- In this work, we consider fundamental and adjoint reps
 - extension to other representation.
- Quantum Mpemba effect in finite temperature systems.
- Microscopic mechanism of the quantum Mpemba effect.

Appendix: level k dependence

Let us consider the level- k dependence with fixed rank N .

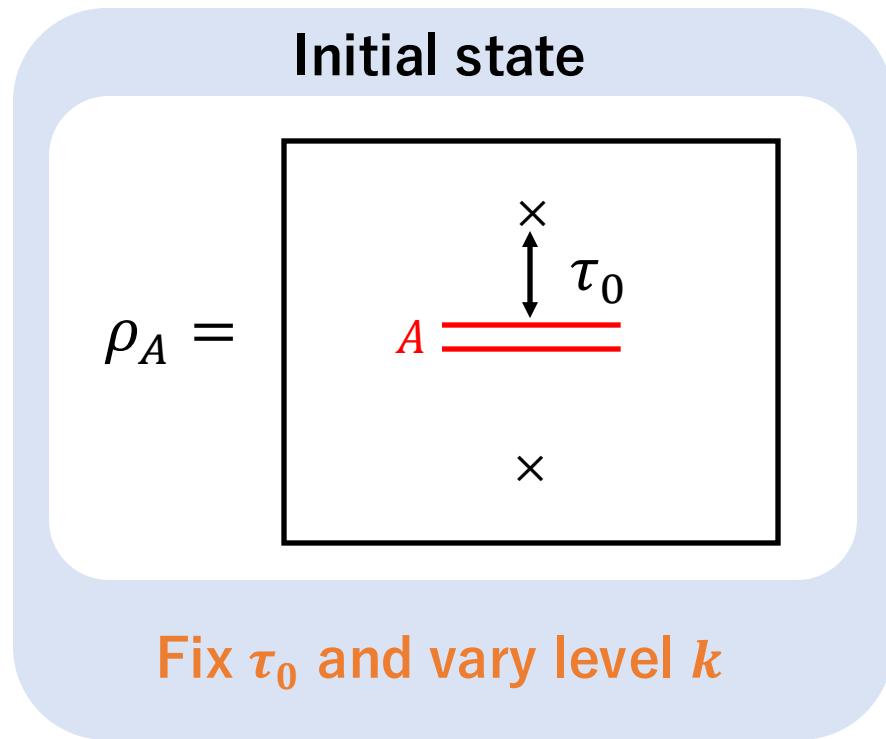


Degree of symmetry breaking

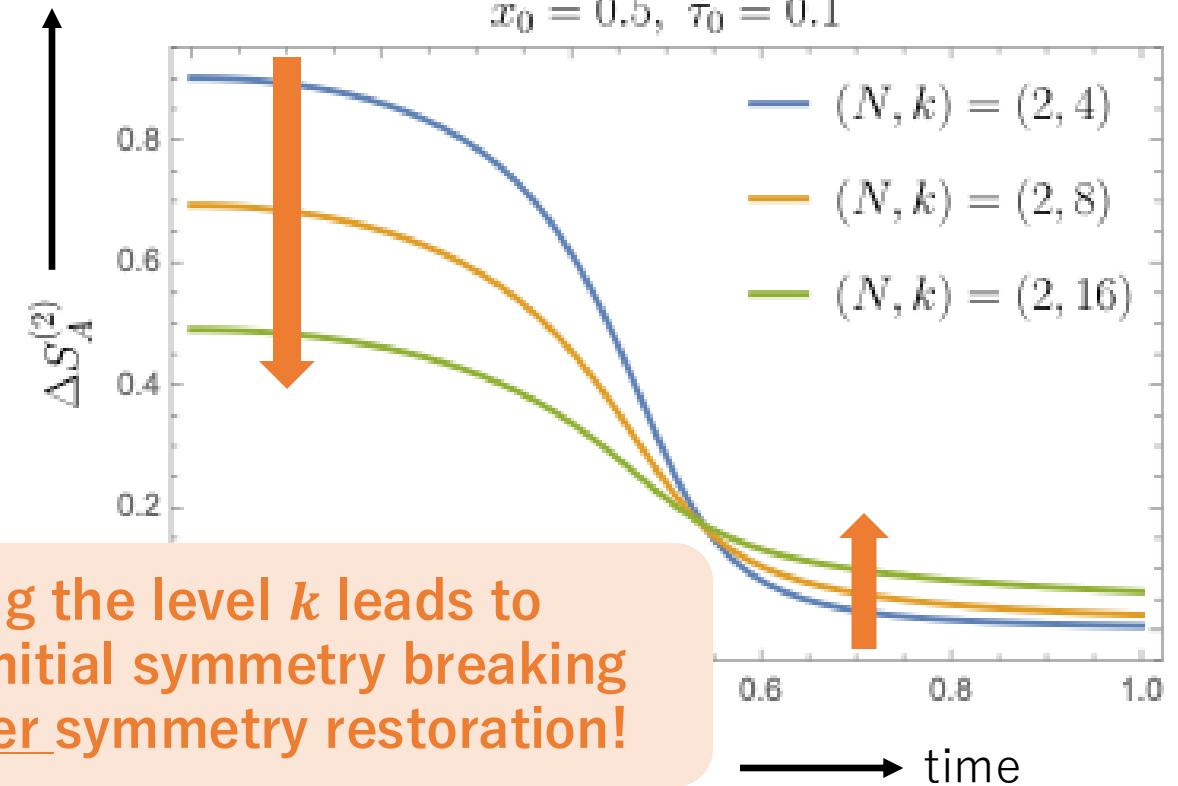


Appendix: level k dependence

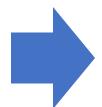
Let us consider the level- k dependence with fixed rank N .



Degree of symmetry breaking



Increasing the level k leads to
weaker initial symmetry breaking
but slower symmetry restoration!



This is also a new type of quantum Mpemba effect!

Appendix: other initial state

Vary τ_0 , with (N, k) fixed.

Initial state

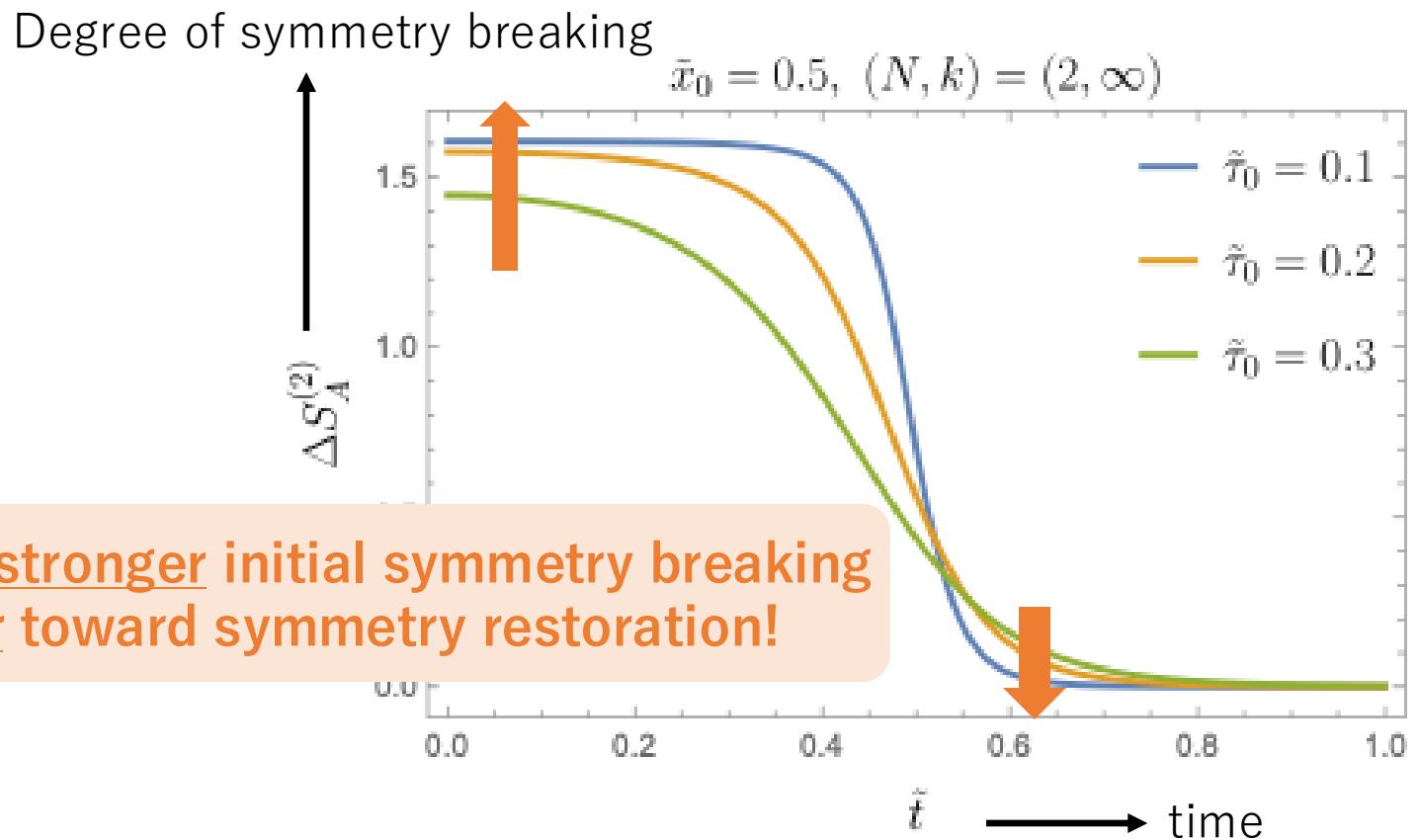
$$|\psi_{AB}(t=0)\rangle = J^a(x_0, \tau_0)|0\rangle$$

J^a : WZW current in adjoint rep.

$$a = 1, \dots, N^2 - 1$$

$$\rho_A = \boxed{A = \overbrace{\hspace{1cm}}^{\tau_0}}$$

Take limit $k \rightarrow \infty$ for simplicity



State with stronger initial symmetry breaking
relax faster toward symmetry restoration!

 We also demonstrate the quantum Mpemba effect in this case

Appendix: Other initial state

Vary N with τ_0 fixed.

Initial state

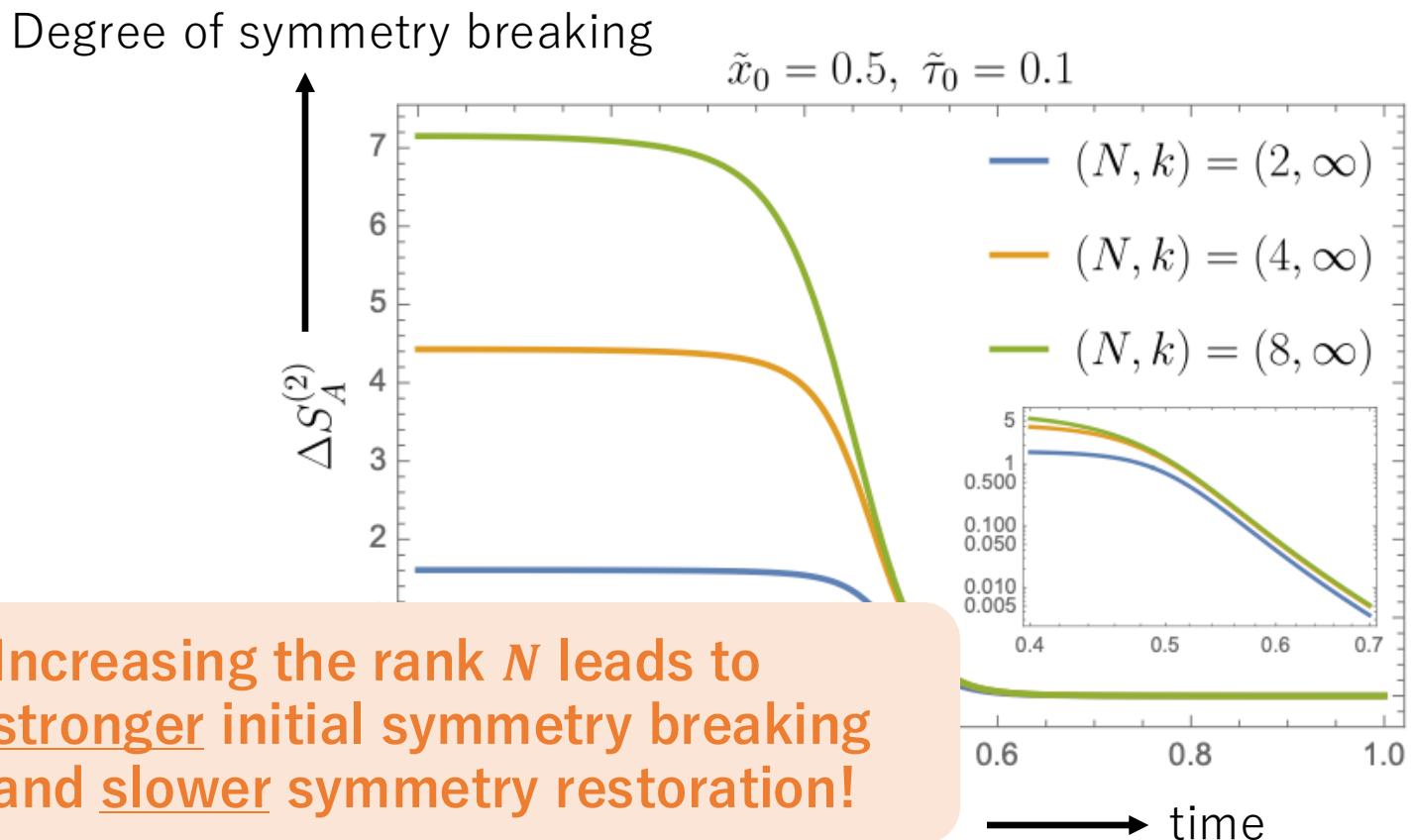
$$|\psi_{AB}(t=0)\rangle = J^a(x_0, \tau_0)|0\rangle$$

J^a : WZW current in adjoint rep.

$$a = 1, \dots, N^2 - 1$$

$$\rho_A = \boxed{A = \tau_0}$$

Take limit $k \rightarrow \infty$ for simplicity



→ There is no new type of quantum Mpemba effect in this case

Appendix: quasiparticle picture

Initial state

$$|\psi_{AB}(t = 0)\rangle = \Phi_i(x_0, \tau_0)|0\rangle$$

Φ_i : primary field in fund. rep.
($i = 1, \dots, N$)

Take limit $\tau_0 \rightarrow 0$

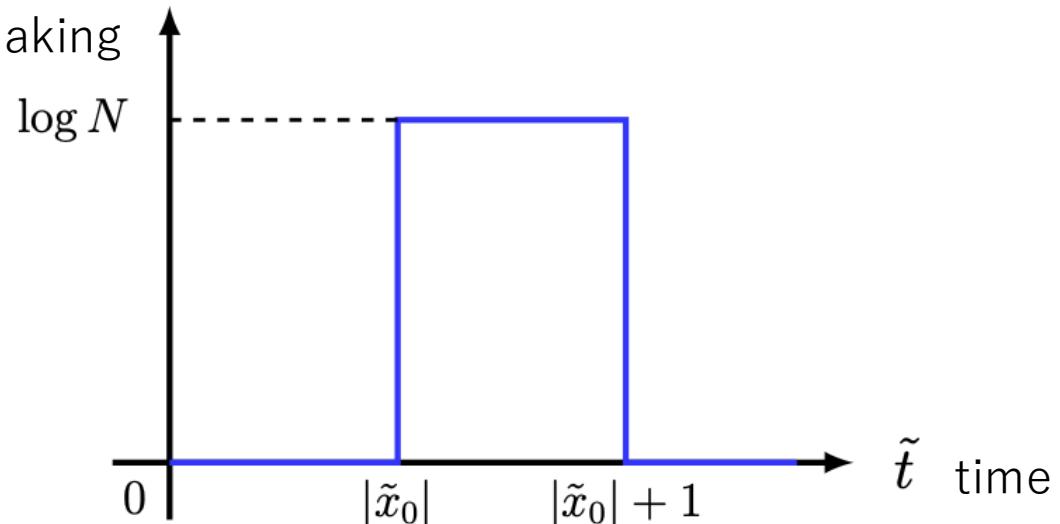
$$\rho_A = \boxed{\text{---} \atop \text{---}}$$

Diagram illustrating the initial state ρ_A . It shows a rectangular region with a horizontal axis labeled x and a vertical axis labeled ϵ . A point x_0 is marked on the x -axis. A red horizontal line segment, labeled A , is positioned at a distance ϵ from the x -axis. The region is bounded by the x -axis, the ϵ -axis, and the vertical boundaries of the rectangle.

Degree of symmetry breaking

$$\Delta S_A^{(2)}(\tilde{t})$$

Our result



Appendix: quasiparticle picture

Initial state

$$|\psi_{AB}(t = 0)\rangle = \Phi_i(x_0, \tau_0)|0\rangle$$

Φ_i : primary field in fund. rep.
($i = 1, \dots, N$)

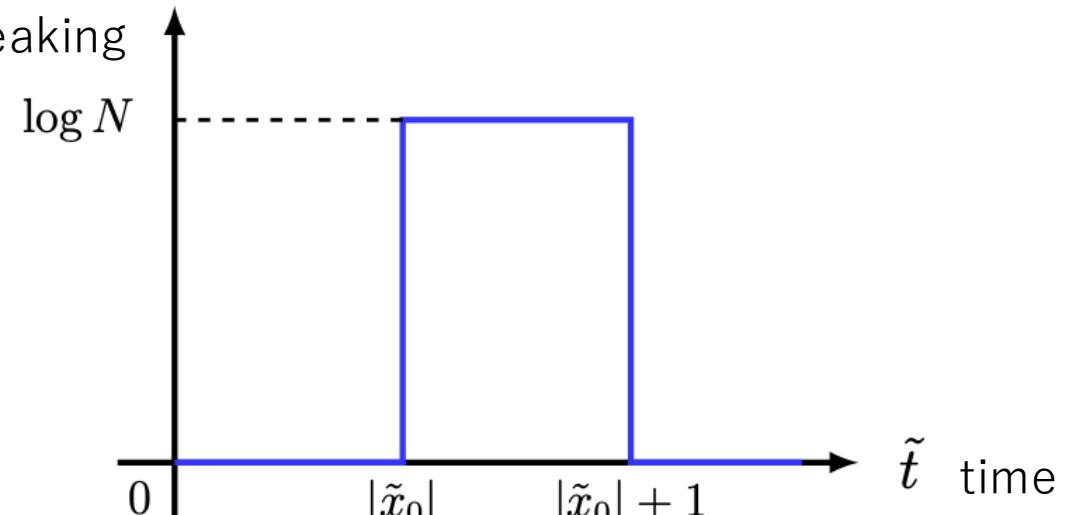
Take limit $\tau_0 \rightarrow 0$

$$\rho_A = \begin{array}{|c|c|c|} \hline & \epsilon & \\ \hline & \times & \xrightarrow{x} \\ \hline & |x_0| & \xrightarrow{A} \\ \hline \end{array}$$

Degree of symmetry breaking

$$\Delta S_A^{(2)}(\tilde{t})$$

Our result



Physical interpretation

