

Quantum entanglement for detecting non-invertible symmetry breaking

Harunobu Fujimura

Based on ongoing work with Soichiro Shimamori

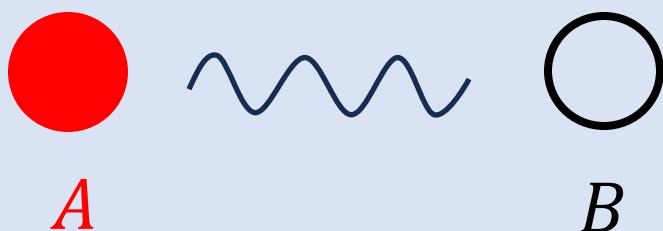
@Het Camp 2024/11/14

Introduction

Today's two topics;

Quantum Entanglement

=Quantum correlations that has no counterpart in classical theory

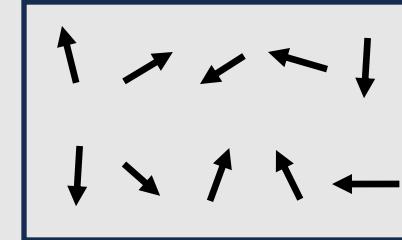


Applications

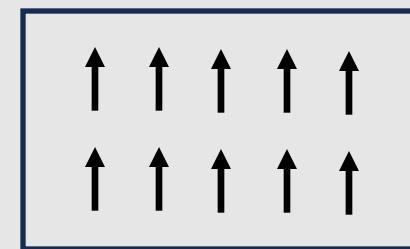
- quantum computation
- quantum teleportation
- Holography , etc

Apply

Symmetry breaking



$T > T_c$
(Symmetric)



$T < T_c$
(Symmetry broken)

- liquid \rightarrow solid transition
- Ferromagnetic of spin chain
- Chiral symmetry breaking in QCD , etc

I will show how entanglement can be a powerful tool for studying symmetry breaking.

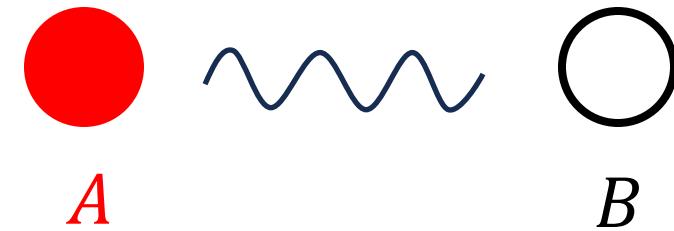
Introduction

How to quantify quantum entanglement?

State of total system: $|\psi_{AB}\rangle$

Density matrix : $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$

Reduced density matrix : $\rho_A = \text{Tr}_B[\rho_{AB}]$



Entanglement Entropy(EE) :

$$S(\rho_A) \equiv -\text{Tr}_A[\rho_A \log \rho_A]$$

EE represent how much system A and B are quantum entangled.

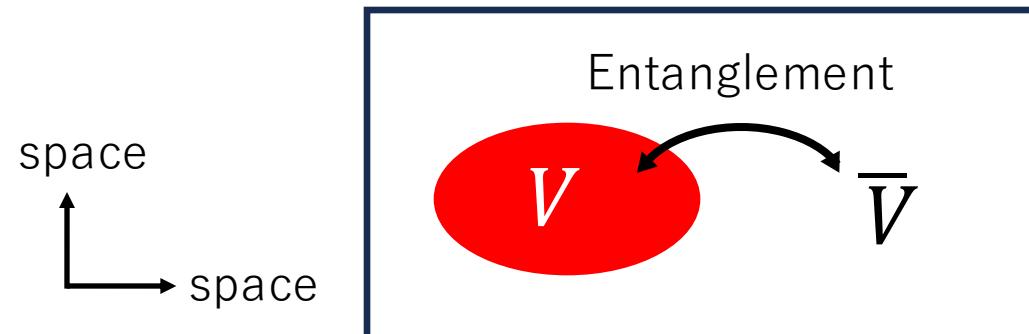
Introduction

Quantum entanglement for QFT;

Field $\phi(x) \rightarrow$ There are degrees of freedom on each special point.

Subsystem $A \rightarrow$ region V

Subsystem $B \rightarrow$ region \bar{V} = complementary region of V



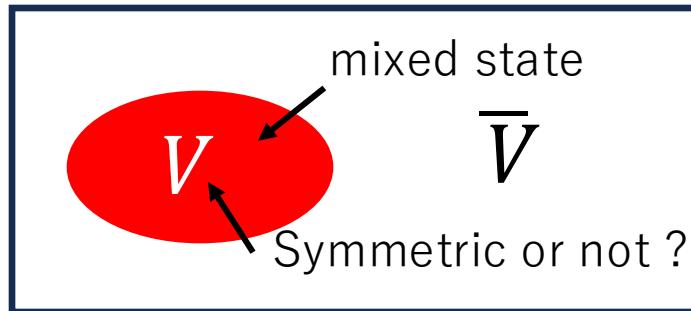
Entanglement Entropy for QFT :

$$S(\rho_V) \equiv -\text{Tr}_V[\rho_V \log \rho_V]$$

ρ_V : The density matrix on region V

Introduction

How do we consider the symmetry breaking at the level of subsystem V (=mixed state)?



Conventional method using order parameter

- Typically, we assume a pure state $|\Psi\rangle$ (often the vacuum state).

Entanglement Asymmetry(EA) [Filiberto Ares, et al, 2022]

- EA is defined by entanglement entropy.
- EA quantify how much the symmetry is breaking at the level of subsystem.
- It is valid for general mixed states.

Outline

1. Introduction

2. Entanglement Asymmetry

3. Application to QFT and non-invertible symmetry
(Ongoing work)

4. Summary and future direction

Outline

1. Introduction

2. Entanglement Asymmetry

3. Application to QFT and non-invertible symmetry
(Ongoing work)

4. Summary and future direction

2. Entanglement Asymmetry

Let's consider a continuum symmetry whose charge is $Q = Q_A + Q_B$

where, $Q_{A/B}$ is charge that act on subsystem A/B .

$[\rho_A, Q_A] = 0$ or $\neq 0$: symmetric or not on A

$$\rho_A = \begin{pmatrix} * & & & \\ & * & & \\ & & * & \\ & & & * \end{pmatrix}$$

(Remove the off-diagonal elements)

projection \rightarrow

$$\rho_{A,Q} \equiv \sum_{q_A} \Pi_{q_A} \rho_A \Pi_{q_A}$$

Π_{q_A} : Projector onto the eigenspace of Q_A with charge q_A

$\rho_A = \rho_{A,Q} \iff$ Symmetric on subsystem A

$\rho_A \neq \rho_{A,Q} \iff$ Symmetry breaking on subsystem A

2. Entanglement Asymmetry

Entanglement Asymmetry (EA) [Filiberto Ares, et al, 2022]

$$\begin{aligned}\Delta S_A &\equiv S(\rho_A | \rho_{A,Q}) \equiv \text{Tr}[\rho_A (\log \rho_A - \log \rho_{A,Q})] \\ &= S(\rho_{A,Q}) - S(\rho_A)\end{aligned}$$

: Relative entropy (=distance between ρ_A and $\rho_{A,Q}$)

Important property [S. Kullback, et al 1951]

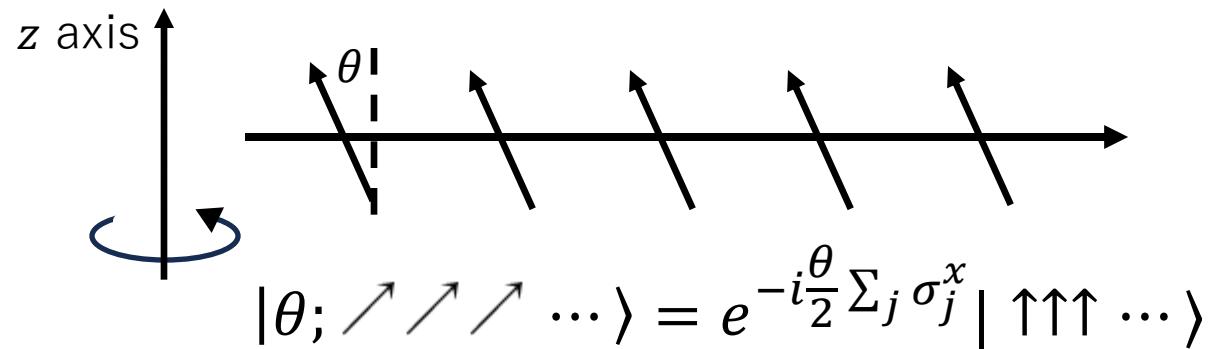
$$\Delta S_A = 0 \Leftrightarrow \rho_A = \rho_{A,Q} \quad ([\rho_A, Q_A] = 0) \quad \text{Symmetric on subsystem } A$$

$$\Delta S_A > 0 \Leftrightarrow \rho_A \neq \rho_{A,Q} \quad ([\rho_A, Q_A] \neq 0) \quad \text{Symmetry breaking on subsystem } A$$

EA represents how much the symmetry is breaking on subsystem A

2. Entanglement Asymmetry

Example : Spin 1/2 chain



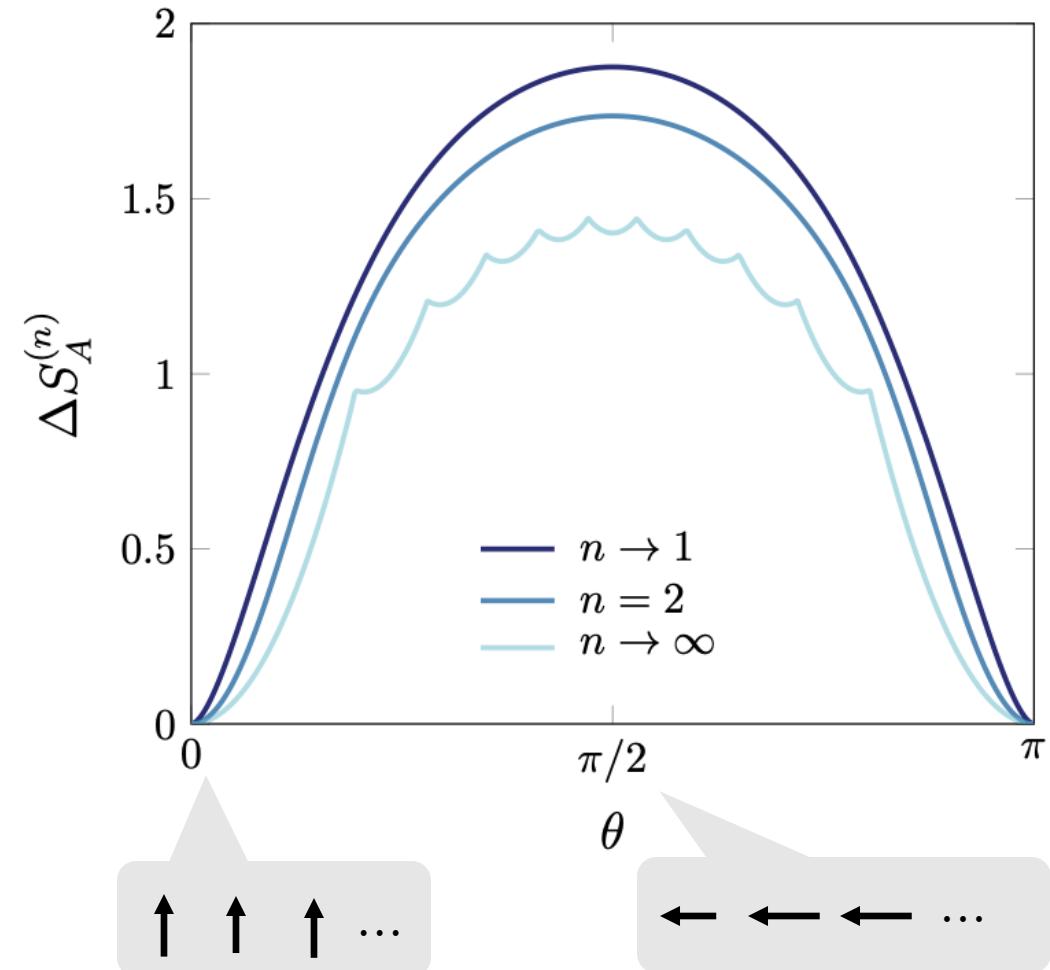
Consider the rotational symmetry around z axis

$$\left(Q = \frac{1}{2} \sum_j \sigma_j^z \right)$$

Projector : $\Pi_{q_A} = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-i\alpha q_A} e^{i\alpha Q_A}$

Rényi EA : $\Delta S_A^{(n)} = \frac{1}{1-n} \log \left(\frac{\text{Tr}[\rho_{A,Q}^n]}{\text{Tr}[\rho_A^n]} \right)$

[Filiberto Ares, et al, 2022]



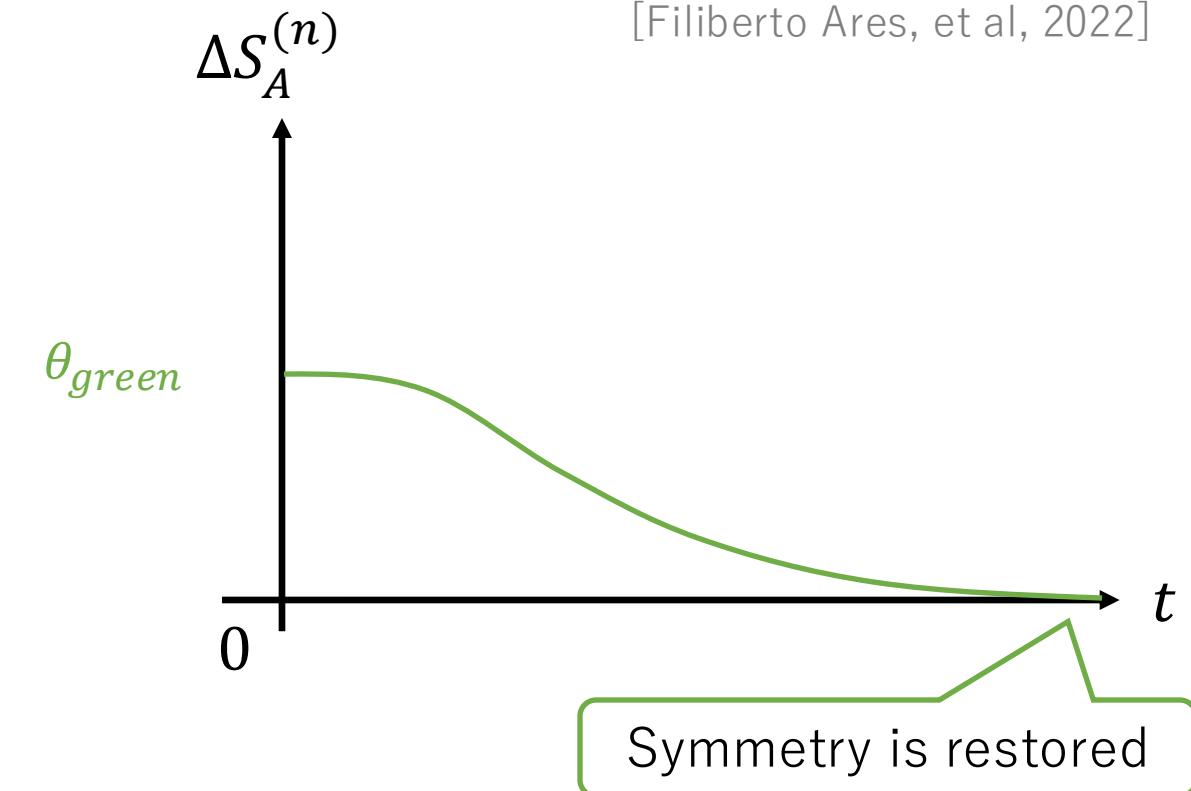
2. Entanglement Asymmetry

Let's see the symmetry restoration

Quench of XX Hamiltonian

$$H = -\frac{1}{4} \sum_j \left(\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y \right)$$
$$([H, Q] = 0)$$

$$|\Psi(t)\rangle = e^{iHt} |\theta; \nearrow \nearrow \nearrow \dots \rangle$$



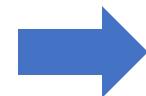
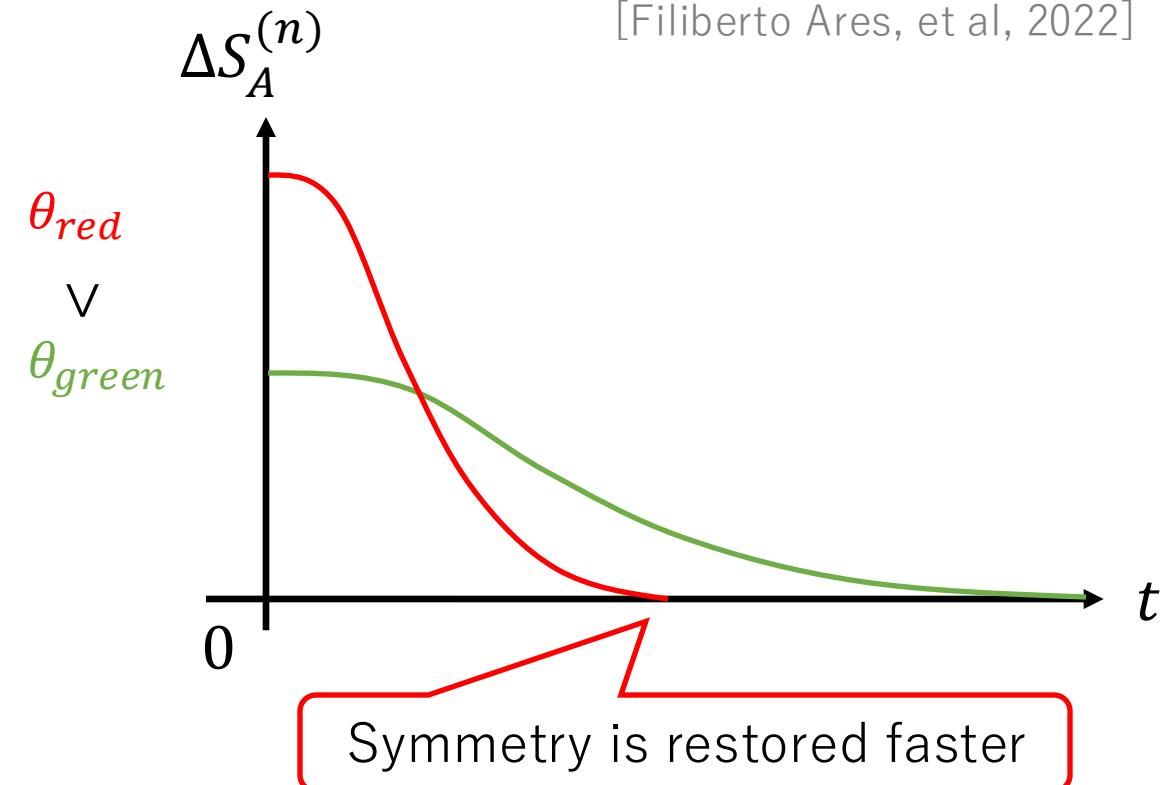
2. Entanglement Asymmetry

Let's see the symmetry restoration

Quench of XX Hamiltonian

$$H = -\frac{1}{4} \sum_j \left(\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y \right)$$
$$([H, Q] = 0)$$

$$|\Psi(t)\rangle = e^{iHt} |\theta; \nearrow \nearrow \nearrow \dots \rangle$$



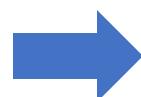
2. Entanglement Asymmetry

Let's see the symmetry restoration

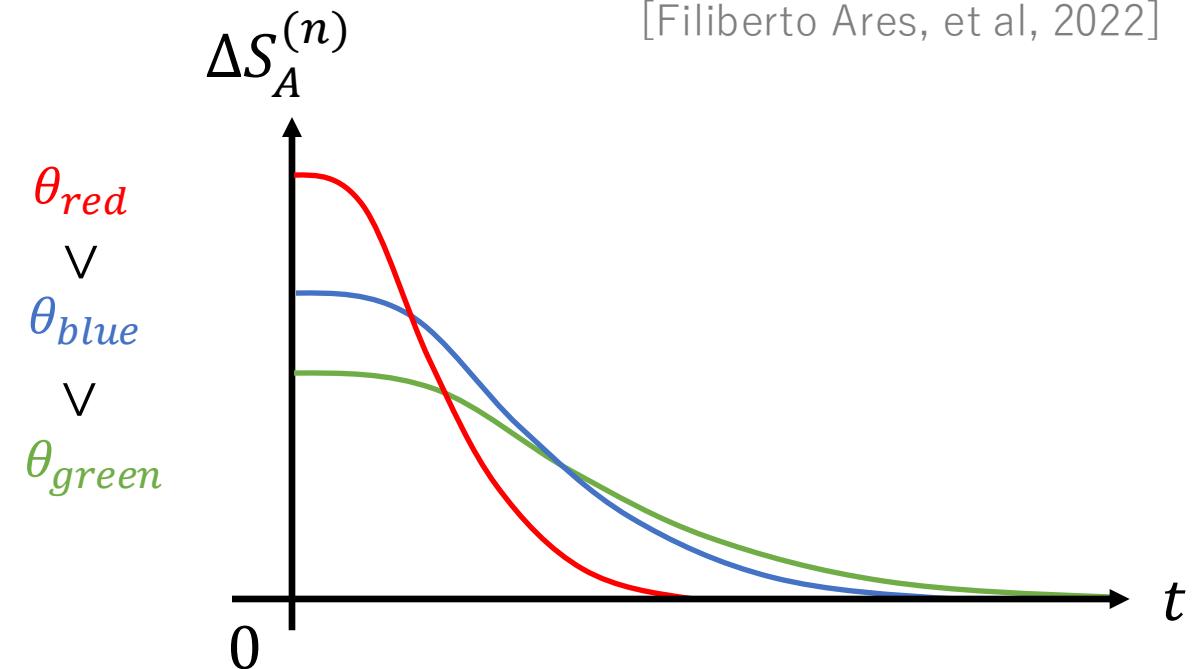
Quench of XX Hamiltonian

$$H = -\frac{1}{4} \sum_j \left(\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y \right)$$
$$([H, Q] = 0)$$

$$|\Psi(t)\rangle = e^{iHt} |\theta; \nearrow \nearrow \nearrow \dots \rangle$$



[Filiberto Ares, et al, 2022]



Quantum Mpemba effect :

More the symmetry is initially broken, it is restored faster.

Counterintuitive phenomena which is fined by EA.

Outline

1. Introduction

2. Entanglement Asymmetry

3. Application to QFT and non-invertible symmetry
(Ongoing work)

4. Summary and future direction

3. Application to QFT and non-invertible symmetry (Ongoing work)

EA for QFT

G : Abelian group of symmetry

$$\text{Projector} : \Pi_r = \frac{d_r}{|G|} \sum_{g \in G} \chi_r^*(g) \widehat{U}_g$$

\widehat{U}_g : Symmetry defect with respect to $g \in G$

r : label of irreducible representation of G

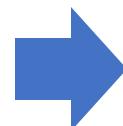
d_r : dimension of irrep r

$|G|$: order of group G

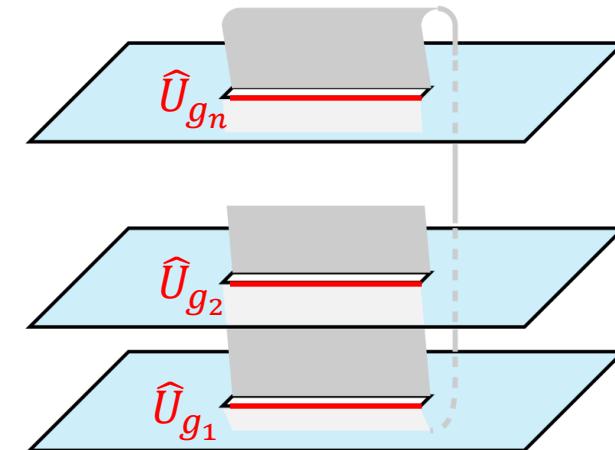
$\chi_r(g)$: character of group element $g \in G$

Replica method

$$\left(\rho_{A,Q} \equiv \sum_{q_A} \Pi_{q_A} \rho_A \Pi_{q_A} \right)$$



$$\text{Tr}[\rho_{A,Q}^n] \sim$$



We can use the same techniques used to calculate entanglement entropy.

3. Application to QFT and non-invertible symmetry (Ongoing work)

Our aim : Generalizing the EA to non-invertible symmetry

Ordinary symmetry

→ Group G

$$\hat{U}_g \times \hat{U}_{g'} = \hat{U}_{g''}$$

The inverse \hat{U}_g^{-1} exist

Non-invertible symmetry

→ Category C

$$\hat{\mathcal{L}}_a \times \hat{\mathcal{L}}_b = \sum_c N_{a,b}^c \hat{\mathcal{L}}_c$$

$\hat{\mathcal{L}}_a$: Symmetry defect of $a \in C$

Lack of inverse $\hat{\mathcal{L}}_a^{-1} \rightarrow$ non-invertible symmetry

For simplicity, we consider 2d RCFT.

Projector for group

$$\Pi_r = \frac{d_r}{|G|} \sum_{g \in G} \chi_r^*(g) \xrightarrow{\hat{U}_g}$$

Replace
 \hat{U}_g to $\hat{\mathcal{L}}_a$

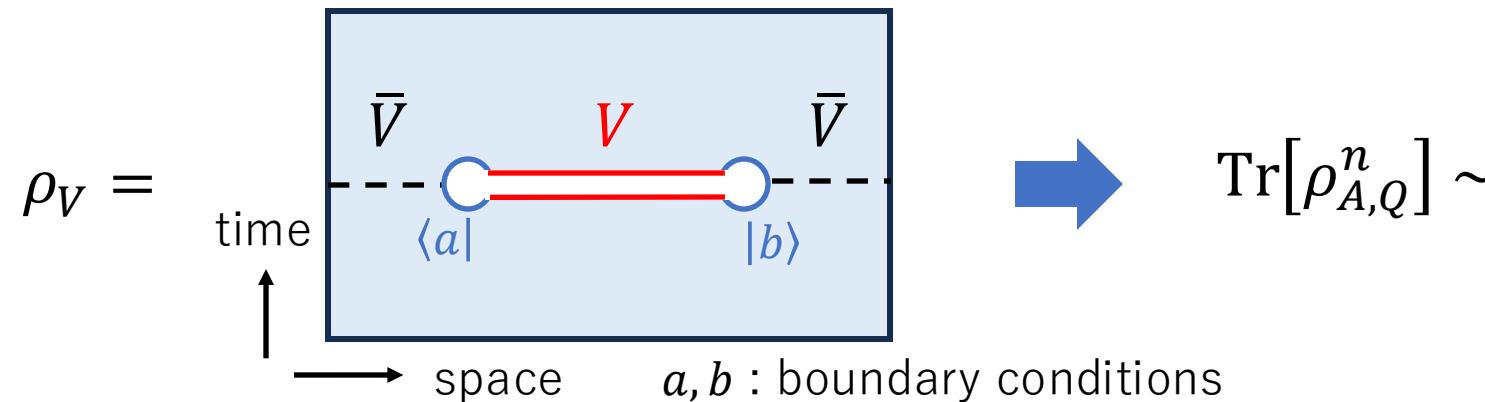
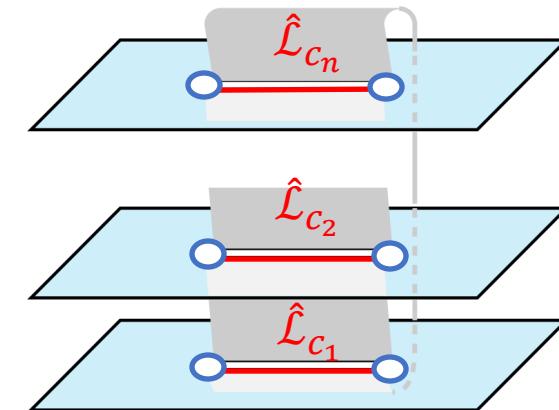
Projector for category

$$\Pi_c = \frac{d_c}{|C|} \sum_{b \in C} \chi_c^*(b) \xrightarrow{\hat{\mathcal{L}}_b}$$

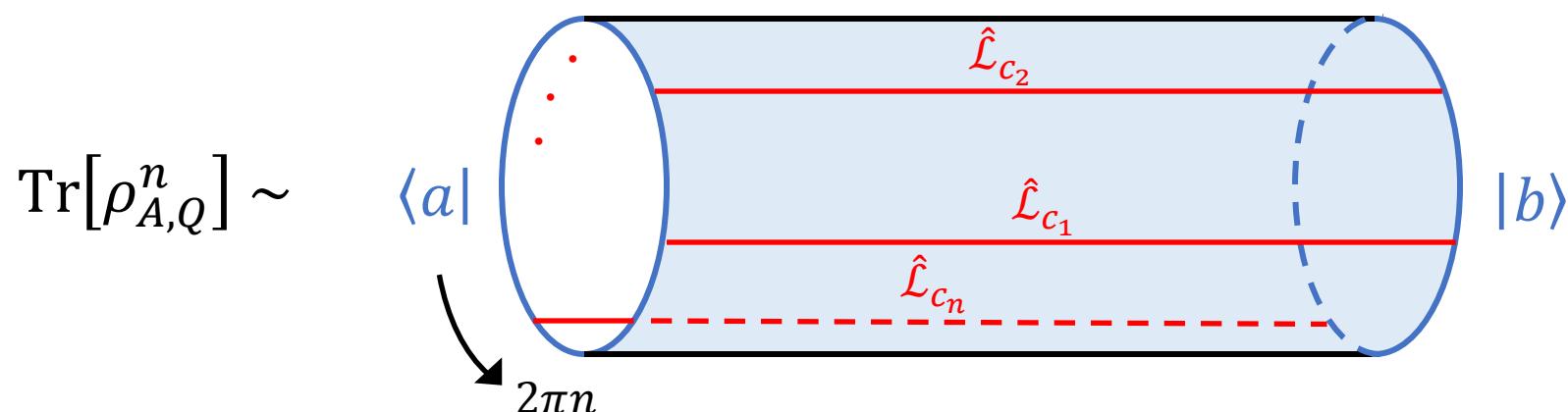
3. Application to QFT and non-invertible symmetry (Ongoing work)

Our setting :

(1+1)d RCFT and set subspace V as follows;

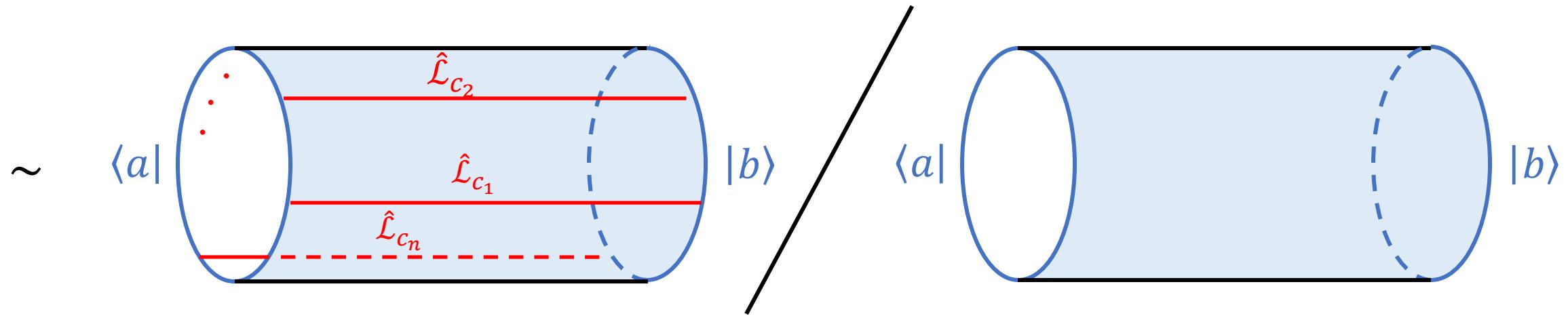


A conformal map reduces this replica manifold to the cylinder.



3. Application to QFT and non-invertible symmetry (Ongoing work)

$$\Delta S_A^{(n)} \sim \text{Tr}[\rho_{A,Q}^n] / \text{Tr}[\rho_A^n]$$



We are calculating EA using **Tricritical Ising model** (=a 2d RCFT with $c=7/10$)
=one of the model which shows non-invertible symmetry

The boundary conditions a, b can be symmetric or symmetric → we are investigating...

We are exploring whether EA can analyze the breaking of non-invertible symmetry.

Outline

1. Introduction

2. Entanglement Asymmetry

3. Application to QFT and non-invertible symmetry
(Ongoing work)

4. Summary and future direction

4. Summary and future direction

Summary

- Entanglement and symmetry breaking are important concepts in physics.
- Entanglement quantify how much the symmetry is breaking at the level of subsystem.
(→ Quantum Mpemba effect)
- We are generalizing EA to non-invertible symmetry.

Future direction

- We are actually verifying EA with a concrete model (Tricritical Ising model) which has non-invertible symmetry.
- Currently, we are calculating EA with symmetric or asymmetric boundary conditions.
- We will unveil whether the EA work for non-invertible symmetry as well as for group like symmetry.

Appendix

Appendix

How to detect the continuum symmetry breaking?

$$Q|\Psi\rangle = 0 \text{ or } \neq 0 \quad Q : \text{Charge of some symmetry}$$

(But $Q|\Psi\rangle$ is ill defined state when $Q|\Psi\rangle \neq 0$)

The mostly used method is to calculate the **order parameter**.

$A(x)$: some operator

$$\delta A(x) \equiv i[Q, A(x)]$$

$$\langle \delta A(x) \rangle = \langle \Psi | \delta A(x) | \Psi \rangle = i \langle \Psi | (Q A(x) - A(x) Q) | \Psi \rangle$$

Order parameter as an indicator of symmetry breaking

$$\langle \delta A(x) \rangle = 0 \quad \rightarrow \quad \text{Symmetric} : Q|\Psi\rangle = 0$$

$$\langle \delta A(x) \rangle \neq 0 \quad \rightarrow \quad \text{Symmetry broken} : Q|\Psi\rangle \neq 0$$

Appendix

How to detect the discrete symmetry breaking?

$$U|\Psi\rangle = |\Psi\rangle \text{ or } \neq |\Psi\rangle$$

U : unitary op which implement the transformation of discrete symmetry

Example \mathbf{Z}_2 : $\phi(x) \mapsto -\phi(x)$

$$-\phi(x) = U^\dagger \phi(x) U$$

$$-\langle \Psi | \phi(x) | \Psi \rangle = \langle \Psi | U^\dagger \phi(x) U | \Psi \rangle = \langle \Psi | \phi(x) | \Psi \rangle \quad \text{if } U|\Psi\rangle = |\Psi\rangle$$

$\langle \Psi | \phi(x) | \Psi \rangle = 0$ (Symmetric)
 $\langle \Psi | \phi(x) | \Psi \rangle \neq 0$ (Symmetry broken)

